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Abstract A modular approach to control is one way to reduce the complexity of
supervisory controller design for discrete-event systems (DES). A problem, however,
is that modular supervisors can conflict with one another. This paper proposes
requirements on coordinating filters that will resolve this conflict. Abstractions are
employed to reduce the complexity of the filter construction. Our specific approach is
unique in that it employs a conflict-equivalent abstraction that offers the potential for
greater reduction in model size than those abstractions employed in previous works
on conflict resolution. The resulting control implemented by the modular supervisors
in conjunction with coordinating filters meeting the proposed requirements is shown
to be safe and nonblocking. Approaches for constructing these filters are discussed
and a methodology that implements deterministic coordinating filter control laws by
nondeterministic automata is presented. The covering-based filter law construction
methodology presented here is further demonstrated to provide less restrictive
control than existing results on state-feedback supervisory control.
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1 Introduction

It is well-know that one of the primary obstacles facing the application of existing
supervisory control theory is the complexity that arises when it is applied to large-
scale discrete-event systems (DES). This complexity arises due to the explosion of
the state space that occurs when considering systems with even a modest level of con-
currency. To address the complexity problem, hierarchical and modular approaches
have been considered in the literature. The overall goal of this paper is to generate
a set of modular supervisors and conflict-resolving filters to control the behavior of a
given plant to satisfy a set of specifications in a nonblocking manner. A further goal
is to limit the computational complexity necessary for constructing the supervisors
and filters.

Hierarchical approaches (Zhong and Wonham 1990; Wong and Wonham 1996;
Hubbard and Caines 1998) hide aspects of a model to generate a “high-level”
system. A controller is then constructed from the abstracted DES thereby reducing
complexity and often times improving understandability. The control generated for
the high-level system is then mapped back to the “low-level” for application to the
actual system. A limitation of this approach is that generally the monolithic system is
built first and then abstracted. In many cases, the state space of the monolithic system
is too large to construct.

Modular control (Ramadge and Wonham 1988; Lin and Wonham 1988;
de Queiroz and Cury 2000) leverages the fact that DES models and specifications
are often generated in a component-wise manner. The traditional approach to
supervisory control would compose these models and specifications to construct one
large monolithic supervisor. In this process of composition, the state space may
explode. The modular approach to supervisory control avoids this growth in com-
plexity by building a series of modular supervisors to meet each of the component
specifications individually, rather than a single monolithic supervisor to meet all
specifications simultaneously. Even though each modular supervisor might satisfy
its given specification and allow its associated subplant to reach a “completion” state
when acting by itself, it is possible the individual modular supervisors can interfere
with one another, preventing some of the subplants from reaching completion. Each
of the component specifications could have conflicting goals. It is possible to check
a priori that the modular supervisors will not conflict with one another, but this
verification is often computationally expensive because it relies on a global analysis
of the monolithic system.

Some noteworthy work allows it to be verified locally that modules are noncon-
flicting by adding interfaces between the system’s components (Leduc et al. 2005a,
b; Hill et al. 2008). These structural restrictions often result in suboptimal control,
but can greatly reduce the complexity of verification. These works do not provide
algorithms for the construction of the interfaces, but rather rely on the designer’s
understanding of the system. Other works exist to reduce the complexity associated
with verifying that modules are nonconflicting (Pena et al. 2006; Flordal and Malik
2006) through the use of incremental analysis and abstraction. A question that is left,
however, and that we will address in this paper, is what to do if conflict among the
modules is detected.

Some research combines aspects of modular control with the abstraction of
hierarchical approaches (Schmidt et al. 2005; Malik et al. 2007; Hill and Tilbury 2008).
These works achieve a greater level of complexity reduction as compared to the
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monolithic approach without ever building the monolithic system and without having
to verify that the modules are nonconflicting. These gains are achieved by putting
further requirements on the structure of the modular supervisors. These restrictions
can limit the overall reduction in complexity that can be achieved. Other works that
combine aspects of modular and hierarchical control (Wong and Wonham 1998; Feng
and Wonham 2006) employ abstraction and add coordinators on top of the modular
supervisors to resolve conflict.

Most of the above works utilize a language projection with the observer property
of Wong and Wonham (1996). The work of Wong and Wonham (1998) does
not assume a language projection is used, but does require of its mapping the
observer property. The observer property guarantees that the abstraction maintains
a type of observation equivalence. In this paper we will employ a less restrictive
abstraction that maintains only conflict properties. The notion of conflict equiva-
lence was first introduced in Malik et al. (2006) and shown in Malik et al. (2007)
to offer the potential for greater reduction in model size than can be achieved
by observation-equivalent abstractions. Conflict-equivalent abstractions were em-
ployed by Flordal and Malik (2006) to reduce the complexity of verifying that
automata are nonconflicting. They were also employed in Malik et al. (2007) for
constructing nonconflicting modular supervisors. The work of Malik et al. (2007),
however, does not specify how to construct the supervisors based on the abstracted
models.

The contribution of this paper is to propose a unique methodology for con-
structing filters to resolve conflict among closed-loop modules in systems where it is
detected. In contrast to existing work, our approach explicitly states how to construct
nonconflicting control laws using conflict-equivalent abstractions. We build off of the
approach of Flordal and Malik (2006) that proposes to incrementally abstract and
compose modules to reduce the complexity associated with verifying that they are
nonconflicting. Like Flordal and Malik (2006), we leverage the additional reduction
in model size that a conflict-equivalent abstraction achieves. We specifically propose
a set of novel requirements on the conflict-resolving filter laws, that if met, guarantee
safe nonblocking control when acting in conjunction with traditionally built modular
supervisors. We then specify one approach for constructing filters that meet these
proposed requirements. The filter construction algorithm itself represents a signifi-
cant contribution in that it generates a covering-based feedback law in the presence
of nondeterminism that results in less restrictive control than can be achieved by
existing state-feedback approaches (Li 1991; Takai and Kodama 1998). The ability
to handle nondeterministic models is necessitated by the fact that the conflict-
equivalent abstraction can introduce nondeterminism.

The outline of the rest of this paper is as follows. Section 2 introduces the neces-
sary background and concepts. Section 3 provides a procedure for resolving conflict
assuming that filters exist, while Section 4 proves that deterministic filters meeting the
given language-based requirements provide safe nonblocking control when acting in
conjunction with traditionally built modular supervisors. Section 5 then generates a
set of analogous state-based requirements that allow the deterministic filter laws to
be represented by nondeterministic automata. These state-based requirements are
then shown to be satisfied by construction for the covering-based filter laws presented
in Section 6. Section 7 applies these results to a manufacturing example and Section 8
summarizes the contributions of this paper. Preliminary and partial versions of our
results were presented in papers (Hill et al. 2008a, b).
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2 Notation and preliminaries

In this work we will consider DES modeled by possibly nondeterministic automata.
Each automaton generates a language representing the set of possible behaviors
of the DES and is represented by the five-tuple G = (Q, �τ , δ, q0, Qm), where Q
is the set of states, �τ = � ∪ {τ } is the set of events including the silent event
τ , δ : Q × �τ → 2Q is the state transition function, q0 ∈ Q is the initial state, and
Qm ⊆ Q is the set of marked states representing successful termination of a process.
There are algorithms in this paper that remove states from an automaton such that an
empty state set may result. In this case we obtain what is commonly referred to in the
literature as the “empty automaton.” Let �∗

τ be the set of all finite strings of elements
of �τ , including the empty string ε. The function δ is extended to δ : Q × �∗

τ → 2Q

in the natural way. The notation δ(q, s)! for any q ∈ Q and any s ∈ �∗
τ denotes that

δ(q, s) is nonempty. The notation �G(q) will represent the set of feasible events of
state q in automaton G, that is, those events σ ∈ �τ for which δ(q, σ )!. A string s ∈ �∗

τ

will be said to be accepted by an automaton G if δ(q0, s)!.
Let Pτ : �∗

τ → �∗ be the natural projection that erases the silent event τ from
strings s ∈ �∗

τ . The generated and marked languages of G, denoted by L(G) and
Lm(G) respectively, are defined by L(G) = {Pτ (s) ∈ �∗ | δ(q0, s)!} and Lm(G) =
{Pτ (s) ∈ �∗ | δ(q0, s) ∩ Qm �= ∅}. For the string s = ru ∈ �∗

τ formed from the cate-
nation of the strings r and u, r is called a prefix of s and is denoted r ≤ s. The notation
K represents the set of all prefixes of strings in the language K, and is referred to as
the prefix-closure of K.

An automaton is said to be nonblocking when from all of its reachable states
a marked state can be reached. From a language point of view, this is defined as
Lm(G) = L(G). If an automaton enters a state from which it cannot reach a marked
state, the automaton is said to have blocked.

2.1 Supervisory control

Supervisory control of DES requires that the event set �τ be partitioned into
controllable and uncontrollable events, �τ = �c∪̇�u, where controllable events can
be disabled and uncontrollable events cannot. Traditionally, the theory of super-
visory control (Ramadge and Wonham 1989) has been developed for application
to deterministic automata models that do not include the silent event τ and are
characterized by the fact that any string can take the automaton to only a single state.
Nondeterministic automata can arise due to abstraction where events are hidden by
replacing them by the silent event τ . Note that τ ∈ �u. Let �h ⊆ � represent the set
of events that are hidden for a given automaton. We will define a supervisor, denoted
S , to be a mapping that, upon observation of a string generated by a plant G, outputs
a list of events to be enabled. Since uncontrollable events must always be enabled,
the mapping S : L(G) → 2�τ implicitly includes all uncontrollable events. It is the
goal of supervisory control to restrict the behavior of the uncontrolled plant to meet
some given specification.

Given a set of allowed behaviors K ⊆ Lm(G) and the set of uncontrollable events
�u ⊆ �, the existence of a supervisor that can successfully restrict the operation
of the plant within the behavior allowed by the specification is guaranteed by
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satisfaction of the following language controllability condition (Cassandras and
Lafortune 2007):

K�u ∩ L(G) ⊆ K (1)

The operation of two automata together is captured via the synchronous compo-
sition (parallel composition) operator, ‖. By representing the supervisor mapping S
as an automaton S, and the open-loop plant as a separate automaton G, the closed-
loop or supervised behavior of the system can be modeled using the synchronous
composition operator, S‖G. Throughout this paper we assume all automata have the
same event set �τ . When two automata operate concurrently they will synchronize
on all events except τ , as specified by the following definition of synchronous
composition.

Definition 1 The synchronous composition of two automata G1 and G2, where G1 =
(Q1, �τ , δ1, q01, Qm1) and G2 = (Q2, �τ , δ2, q02, Qm2) is the automaton

G1‖G2 = (Q1 × Q2, �τ , δ, (q01, q02), Qm1 × Qm2)

where the transition function δ : (Q1 × Q2) × �τ → 2(Q1×Q2) is defined for q1 ∈
Q1, q2 ∈ Q2, and σ ∈ �τ as:

if σ =τ, δ((q1, q2), σ )=

⎧
⎪⎪⎨

⎪⎪⎩

δ1(q1, τ )×{q2} if δ1(q1, τ )! and ¬δ2(q2, τ )!
{q1}×δ2(q2, τ ) if ¬δ1(q1, τ )! and δ2(q2, τ )!

(δ1(q1, τ )×{q2}) ∪ ({q1}
× δ2(q2, τ )) if δ1(q1, τ )! and δ2(q2, τ )!

if σ ∈ �, δ((q1, q2), σ )= δ1(q1, σ ) × δ2(q2, σ ) if δ1(q1, σ )! and δ2(q2, σ )!
else δ((q1, q2), σ ) is empty.

In terms of their generated languages, L(G1)‖L(G2) = L(G1) ∩ L(G2). Also note
that ‖ is a commutative and associative operation. The plant G and specification E
are modeled by deterministic finite state automata given in the following component-
wise manner:

G = G1‖ · · · ‖Gn and E = E1‖ · · · ‖Ep

In this paper, the notation �rel(G) will represent the set of relevant events in G, a
concept that is defined below:

Definition 2 For an automaton G = (Q, �τ , δ, q0, Qm), the relevant event set
�rel(G) is defined as:

�rel(G) = � − {σ ∈ � | ∀q ∈ Q, δ(q, σ ) = {q}}

In words, the relevant event set of an automaton G is made up of those events that
are not τ and that are not only self-looped at every state. Events that are not relevant
cannot exist as transitions between distinct states.

Modular supervisors will be built in the sense of de Queiroz and Cury (2000) as
shown below in Definition 3. Let Hi be an automaton realization of a closed-loop
subsystem Si/G′

i consisting of a plant G′
i under the control of the supervisor Si. The
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notation sup C(K, L) represents the supremal controllable sublanguage of K with
respect to the prefix-closed language L and the given set of uncontrollable events.
The supervisor synthesis of Definition 3 provides that the automaton Hi represents
both the closed-loop behavior of the ith module and its associated supervisor since
Si/G′

i = Hi‖G′
i = Hi.

Definition 3

G′
i = ‖ j∈Ji G j, where:

Ji = { j ∈ {1, . . . , n} | �rel(G j) ∩ �rel(Ei) �= ∅}
Lm(Hi) = sup C(L(Ei) ∩ Lm(G′

i),L(G′
i))

L(Hi) = Lm(Hi)

In the above, the definition of the allowable language as L(Ei) ∩ Lm(G′
i) results in

a nonmarking supervisor. That is, the supervisor does not affect the marking of the
uncontrolled plant. Additionally, given that the uncontrolled plant is nonblocking,
Lm(G′

i) = L(G′
i), this formulation will result in a nonblocking closed-loop subsystem.

The results of this paper will be stated in terms of the closed-loop modules, Hi. Since
the results do not depend on the supervisor employed, supervisors can be constructed
in a manner different from Definition 3. If there are plant modules G j that do not
share relevant events with any of the specifications Ei, they are treated as closed-loop
modules Hi on their own, without any additional supervision. Let {H1, H2, . . . , Hq}
be the resulting set of automata representing the closed-loop modules.

The conjunction of modular supervisors succeeds in satisfying all of the com-
ponent specifications, but does not guarantee nonblocking. In order to accom-
plish this goal, we need that the closed-loop subsystems Hi be nonconflicting. A
set of automata H1, H2, . . . , Hq is nonconflicting if the synchronous composition
H1‖H2‖ . . . ‖Hq is nonblocking. If a set of automata is nonconflicting, its correspond-
ing set of marked languages K1, K2, . . . , Kq is also nonconflicting. A set of languages
is defined as nonconflicting if K1 ∩ K2 ∩ . . . ∩ Kq = K1 ∩ K2 ∩ . . . ∩ Kq.

Unfortunately, a priori verification of the nonconflicting condition is generally
quite expensive computationally. With this in mind, we will incrementally apply
abstraction to our modular supervisors as was done in Flordal and Malik (2006).
In this paper we additionally propose a methodology for resolving the conflict in
systems where it is detected.

2.2 Equivalence reductions

Many types of equivalence relations can be employed for reducing the complexity of
a model. Specifically, equivalence relations can be used to merge equivalent states,
thereby reducing the state size of the model. In this paper we are interested in
generating reduced models that preserve conflict properties, a notion introduced in
Malik et al. (2006).

Definition 4 (Malik et al. 2006) Two automata H1 and H2 are said to be conflict
equivalent if for any third automaton T, H1 and T are nonconflicting if and only if
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H2 and T are nonconflicting. If the automata H1 and H2 are conflict equivalent we
write, H1 �conf H2.

Note that conflict equivalence respects the property of blocking. Also, two lan-
guages can be defined as conflict equivalent in a similar manner to Definition 4.
Using the fact that two automata being nonconflicting implies that their marked
languages are nonconflicting means that H1 �conf H2 implies Lm(H1) �conf Lm(H2).
The converse, however, does not hold since the automaton representation of a given
language is not unique. Specifically, two automata can generate the same language
and not be conflict equivalent. This is demonstrated by the example presented in
Fig. 1. In the figure, automata G1 and G2 generate the same language, but G1 conflicts
with G3 while G2 does not.

More generally, when nondeterministic automata models are considered, lan-
guage equivalence is insufficient for capturing certain system properties. A very
strong equivalence relation on states of automata is bisimulation equivalence (Milner
1989).

Definition 5 Let there be two (possibly nondeterministic) automata G1 =
(Q1, �τ , δ1, q01, Qm1) and G2 = (Q2, �τ , δ2, q02, Qm2). A binary relation ∼⊆ Q1 ×
Q2 on the states of these automata is said to be a bisimulation equivalence if for any
q1 ∈ Q1 and q2 ∈ Q2, q1 ∼ q2 implies that for any σ ∈ �τ :

(i) if q′
1 ∈ δ(q1, σ ) then ∃q′

2 such that q′
2 ∈ δ(q2, σ ) and q′

1 ∼ q′
2;

(ii) if q′
2 ∈ δ(q2, σ ) then ∃q′

1 such that q′
1 ∈ δ(q1, σ ) and q′

1 ∼ q′
2;

(iii) (bisimulation with marking) q1 ∈ Qm1 if and only if q2 ∈ Qm2.

The existence of a bisimulation relation between two states can be thought of as
the two states having the same future behavior (including the silent event τ ). Two
automata are said to be bisimulation equivalent if there exists a bisimulation relation
between the states of these automata such that their initial states are related by the
relation, q01 ∼ q02. If two automata are bisimulation equivalent, most properties of
interest are consistent between the two, including blocking.

Another equivalence relation called weak bisimulation or observation equivalence
(Milner 1989) has also been defined on the states of automata. A weak bisimulation

Fig. 1 Illustrative example
of nondeterminism (initial
states are denoted by an arrow
and marked states by double
circles)
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relation exists between two states if they both have the same “observed” futures.
That is, all continuations from these states must be the same when the silent event
τ is projected away. This concept of observation equivalence is similar to the notion
of the observer property employed in Pena et al. (2006), Wong and Wonham (1998),
Feng and Wonham (2006) and Hill and Tilbury (2008). Refer to Malik et al. (2007)
for a more detailed examination of the relationship between conflict equivalence,
observation equivalence, and projections with the observer property.

Conflict-equivalent abstraction in general provides a greater reduction in the state
size of a model than either an observation-equivalent abstraction or a projection
with the observer property (Malik et al. 2007). A drawback of a conflict-equivalent
abstraction is that it is not as straightforward to implement; it is implemented via
heuristics and a select set of rules (Flordal and Malik 2006; Flordal 2006). Also, a
unique minimal reduction does not exist in general.

In this paper we will employ the notation Ga to represent a conflict-equivalent
abstraction of the automaton G. The abstracted automaton will specifically be
generated in the following manner:

Algorithm 1 Conflict-Equivalent Abstraction

Step 1: Given an automaton G, “hide” those events in the set �h. One approach
for constructing the set �h in the context of the approach of this paper
is presented within Algorithm 2 of Section 3. These events are hidden
by replacing their occurrences in the automaton G by the silent event τ

resulting in an intermediate automaton G′.
Step 2: Apply the conflict equivalence preserving rules that will be identified in

Section 4.2 and are taken from Flordal and Malik (2006); Flordal (2006)
to G′. The result of these rules is the reduced automaton Ga.

Remark 1 While the intermediate automaton G′ and the abstraction Ga are conflict
equivalent per Definition 4 by construction, the original automaton G and the
reduced automaton Ga are not. However, G and Ga do have equivalent conflict
properties with respect to a third automaton T if that automaton does not have any
relevant events that were hidden in the process of generating G′. In other words,
if �rel(T) ∩ �h = ∅, then G and T are nonconflicting if and only if Ga and T are
nonconflicting. In the remainder of this paper, we will only hide events in a manner
consistent with this fact; that is, events are only hidden if they are not relevant to any
remaining automata. In a slight abuse of notation, we will still write that G �conf Ga.
Note also that G and Ga are consistent with respect to the property of blocking.

The software tool Supremica can be employed for generating conflict-equivalent
abstractions (Supremica). Since each automaton in this paper has the same event
set �τ , it is implied that any hidden events are self-looped at every state of the
resulting automaton. However, we will not in general picture all of these self-looped
transitions. Example 1 demonstrates a conflict-equivalent abstraction.

Example 1 Consider automaton G in Fig. 2 where event f is not relevant to any
other automata. Since f is “local” to G, we can hide it by replacing all occurrences of
f by the silent event τ resulting in a new automaton G′. In G′, states 1 and 2 are not
observation equivalent because state 1 has the observed continuation bc while state
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Fig. 2 Illustrative example of a conflict-equivalent abstraction

2 does not. States 1 and 2, however, can be merged to achieve the conflict-equivalent
automaton Ga. We will consider the abstraction Ga to have the same alphabet as
G, namely �τ , but will not picture an event (except τ ) if it is not relevant to the
automaton. Therefore, one can imagine that Ga has the event f self-looped at every
state. A consequence of this abstraction is that Ga is nondeterministic.

In order to make the conflict-equivalent abstraction useful, we need to show that
it is preserved under the synchronous composition operation ‖. This result follows
from Proposition 1 which is a reformulation of a result from Malik et al. (2006).

Proposition 1 Let G, Ga, and H be automata. Also assume that any events hidden in
the process of generating Ga (Algorithm 1) are not relevant to H, that is, �rel(H) ∩
�h = ∅. If G �conf Ga then G‖H �conf Ga‖H. See Remark 1.

The above proposition can be used to show that if no relevant events shared
between G1 and G2 are hidden, then G1‖G2 �conf G1,a‖G2,a. Analogous results can
also be shown for conflict-equivalent languages.

3 Incremental conflict resolution using filters

The overall goal of this paper is to generate a set of modular supervisors and conflict-
resolving filters that control the behavior of a given plant so that it satisfies a set
of specifications in a nonblocking manner. A further goal is to limit the compu-
tational complexity of constructing the supervisors and filters. In this section we
describe a procedure by which conflict is incrementally detected and resolved among
closed-loop modules. Requirements on the conflict-resolving filters are presented in
Section 4 and Section 5, while an algorithm for constructing the filters is presented in
Section 6.

In the following procedure it will be assumed without loss of generality that
the set of closed-loop modules {H1, H2, . . . , Hq} are addressed sequentially. More
specifically, the procedure will begin with the automaton H1 and after abstraction
will be composed with an abstracted version of the automaton H2. A filter automaton
is added only if the resulting composition is blocking. The index i increments on the
number of automata that have been composed so far. Since a filter is constructed to
resolve conflict in a given composition only when the composition is blocking, the
filter index j increments independently.
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Algorithm 2 Conflict Resolution

Step 1: Build modular supervisors according to Definition 3. Note that the supervi-
sors may be constructed in other ways as long as the closed-loop automaton
Hi is employed in the subsequent steps. Any plant components that are not
addressed by a specification are treated as additional closed-loop modules.
Let {H1, H2, . . . , Hq} represent the resulting set of closed-loop modules.
Section 4.4 identifies a special case where the full closed-loop automaton
Hi need not be employed.

Step 2: For each supervised subsystem Hi, generate a conflict-equivalent abstrac-
tion Hi,a according to Algorithm 1. The set of hidden events in this step
corresponds to those events relevant to only a single Hi, that is, �h =
� − ⋃

i �= j(�rel(Hi) ∩ �rel(Hj)).
Step 3: Choose an abstracted subsystem H1,a with which to begin the procedure.

Let H′
i,a = H1,a where i = 1 is the index for the individual closed-loop

modules. Also initialize the filter index, j = 1.
Step 4: Choose one of the remaining abstracted subsystems, Hi+1,a, to compose

with H′
i,a. This operation is performed via synchronous composition,

H′
i,a‖Hi+1,a.

Step 5: If the composition H′
i,a‖Hi+1,a is nonblocking, skip to Step 7, otherwise

proceed to Step 6.
Step 6: At this point a coordinating filter law Hfilt, j : L(H′

i,a‖Hi+1,a) −→ 2�τ must
be generated to resolve the detected conflict in the preceding blocking
composition. Otherwise stated, Hfilt, j is built so that the controlled system
Hfilt, j/(H′

i,a‖Hi+1,a) is nonblocking. Specific requirements for this filter will
be presented in Section 4 and Section 5, and an approach for its construction
will be proposed in Section 6.

Step 7: If all controlled subsystems have been addressed, then i + 1 = q and the
procedure is finished. Otherwise, more abstraction is performed according
to Algorithm 1 and this overall procedure is repeated beginning at Step 4.
The abstraction is performed in order to take advantage of the fact that
some events are no longer relevant to any remaining abstracted subsystems
and hence can now be hidden. More precisely, the set of hidden events
becomes

�h ← �h ∪
(

� −
⋃

k>i+1

�rel(Hk,a)

)

(2)

and H′
i+1 is abstracted to generate H′

i+1,a where H′
i+1 = Hfilt, j/(H′

i,a‖Hi+1,a)

if a filter had been constructed according to Step 6, otherwise, H′
i+1 =

H′
i,a‖Hi+1,a if a filter had not been necessary. The index i is then incre-

mented before returning to Step 4. If a filter had been constructed in Step
6, then the filter index j is also incremented at this time.

The process in Step 4 to Step 7 of abstracting and composing subsystems and
adding filters as necessary to prevent blocking is repeated until there are no more
subsystems remaining. The work of Flordal and Malik (2006) offers a sizable survey
of heuristics for determining the ordering with which subsystems are addressed. The
end result of this procedure is a set of filters that act in conjunction with the set of
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modular supervisors. If the controlled subsystems are nonconflicting on their own, no
filters are needed. If a filter is generated that has an empty state set, it is possible that
a nonempty filter can be found by abstracting away fewer details of the controlled
subsystems, that is, by making �h smaller. A nonempty solution could also be found
by addressing the modules in a different order. This approach to conflict resolution is
the first to employ conflict-equivalent abstraction in the construction of coordinating
filters for conflict resolution. The details of this coordinating level of control will
be discussed in the following three sections. Section 4 provides a set of language-
based requirements that are sufficient to guarantee safe nonblocking control when
the filters are represented by deterministic automata. Section 5 then provides an
analogous set of state-based requirements that allow the deterministic filter laws to
be represented by possibly nondeterministic automata, while Section 6 introduces a
methodology for constructing filters that satisfy these state-based requirements.

4 Language-based filter requirements

In the preceding section, Algorithm 2 was presented for incrementally resolving
conflict among a set of supervised subsystems. In this section we will provide a
set of language-based conditions on these deterministic filter laws and prove they
are sufficient to provide safe nonblocking control when acting in conjunction with
traditionally built modular supervisors. Within this process, we will examine the
details of how a conflict-equivalent abstraction is generated. At the end of this
section, we will also discuss how the closed-loop modules constructed as part of
Algorithm 2 can be reduced to further improve the overall complexity of our
approach.

In Algorithm 2, each filter law Hfilt, j is built with respect to a blocking composition
of abstracted automata that have preceded it. Here we will denote the associated
blocking composition B j,a. In the proofs that follow, we will assume that the control
required by each filter law Hfilt, j is realized by a deterministic, nonblocking automa-
ton Hfilt, j and applied via synchronous composition, that is, Hfilt, j/B j,a = Hfilt, j‖B j,a,
therefore,

B j,a = (
Hfilt, j−1‖ . . .

(
Hfilt,1‖H1,a‖H2,a

)

a . . .
)

a
‖Hi j,a

Furthermore, we will prove that deterministic filter automata meeting the follow-
ing three requirements (R1–R3) will provide safe nonblocking control when acting
in conjunction with the modular supervisors.

Language-based filter requirements

R1) Hfilt, j‖B j,a is nonblocking
R2) L(Hfilt, j) is language controllable w.r.t L(B j,a)

R3) �rel(Hfilt, j) ∩ �h = ∅
In the above, requirement R3 is meant to prevent a given filter law from trying

to affect the occurrence of events that have been hidden. Since the set �h changes
at each iteration, it is implicit in R3 that �h be the set taken at the time the filter
Hfilt, j is constructed. We must now prove that these requirements are sufficient for
guaranteeing safe nonblocking control can be realized.
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In Section 5 we will present new state-based requirements that will allow our
deterministic filter laws Hfilt, j to be realized by possibly nondeterministic automata.
These state-based requirements are also shown to be satisfied by filters constructed
according to the algorithm of Section 6.

4.1 Nonblocking

Recall that the conjunction of modular supervisors satisfies the global specification E.
Since the addition of filters only serves to further restrict the behavior of the system,
the conjunction of filters and modular supervisors also provides safety. We will now
demonstrate global nonblocking. In the following we will assume sequential ordering
of the automata without loss of generality.

Theorem 1 Let Hi be the automaton representing the behavior of the ith controlled
subsystem where i ∈ {1, . . . , q}. Also let there be filter automata Hfilt, j, j ∈ {1, . . . , k},
constructed according to Algorithm 2 and satisfying requirements R1 and R3. The
conjunction of supervised subplants and filters Hfilt,1‖ . . . ‖Hfilt,k‖H1‖ . . . ‖Hq is then
nonblocking.

Proof

• By the procedure of Section 3, automata are incrementally abstracted
and composed. Assume the first two abstracted automata do not conflict.
Therefore, H1,a‖H2,a is nonblocking. Since �rel(H1) ∩ �rel(H2) ⊆ (� − �h),
H1,a‖H2,a �conf H1‖H2 by Proposition 1. Therefore, H1‖H2 is also nonblocking
since conflict equivalence preserves blocking properties.

• Assume the addition of a third automaton also does not cause conflict,
then (H1,a‖H2,a)a‖H3,a is nonblocking. Noting again that conflict equivalence
holds across synchronous composition when shared relevant events are not
abstracted away, (H1,a‖H2,a)a‖H3,a is conflict equivalent to H1,a‖H2,a‖H3.
Since those events made silent in the generation of H1,a and H2,a are not
relevant to any of the remaining subsystems, Proposition 1 provides that
H1,a‖H2,a‖H3 �conf H1‖H2‖H3. Furthermore, since equivalence relations are
transitive, (H1,a‖H2,a)a‖H3,a �conf H1‖H2‖H3. Therefore, H1‖H2‖H3 is also
nonblocking.

• Assume for the first i1 automata addressed, where 1 ≤ i1 ≤ q, no conflict is de-
tected. Therefore, the resulting nested composition given below is nonblocking.

H′
i1 =

((
. . .

((
H1,a‖H2,a

)

a ‖H3,a
)

a
‖ . . .

)

a
‖Hi1−1,a

)

a
‖Hi1,a (3)

Following the logic above, the expression in Eq. 3 is conflict equivalent
to H1‖H2‖ . . . ‖Hi1 . Therefore, H1‖H2‖ . . . ‖Hi1 is nonblocking since the
expression in Eq. 3 is.

• If i1 = q, then there are no filters and we are done. Otherwise, the filter Hfilt,1 is
needed to resolve the conflict in H′

i1,a‖Hi1+1,a, where H′
i1,a is the further abstrac-

tion of the expression in Eq. 3. By R1, Hfilt,1‖H′
i1,a‖Hi1+1,a is nonblocking. By

Proposition 1 and the above, H′
i1,a‖Hi1+1,a is conflict equivalent to H1‖ . . . ‖Hi1+1.

Therefore, Hfilt,1‖H′
i1,a‖Hi1+1,a is conflict equivalent to Hfilt,1‖H1‖ . . . ‖Hi1+1 by
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Proposition 1 since no events in �h at this point are relevant to Hfilt,1 by R3.
Therefore, Hfilt,1‖H1‖ . . . ‖Hi1+1 is nonblocking since Hfilt,1‖H′

i1,a‖Hi1+1,a is.
• Let automata Hi1+2,a through Hi2,a be added such that the following expression

is nonblocking, where i1 + 2 ≤ i2 ≤ q.

H′
i2 =

(
. . .

((
Hfilt,1‖H′

i1,a‖Hi1+1,a
)

a
‖Hi1+2,a

)

a
‖ . . .

)

a
‖Hi2,a (4)

Following the logic employed above, it can then be shown that the expression
in Eq. 4 is conflict equivalent to Hfilt,1‖H1‖ . . . ‖Hi1+1‖Hi1+2‖ . . . ‖Hi2 , which is in
turn nonblocking also.

• If i2 = q, then there are no more filters and we are done. Otherwise, the
filter Hfilt,2 is needed to resolve the conflict in the composition H′

i2,a‖Hi2+1,a,
where H′

i2,a is the further abstraction of the expression in Eq. 4. By R1,
Hfilt,2‖H′

i2,a‖Hi2+1,a is nonblocking. By Proposition 1 and the above, H′
i2,a‖Hi2+1,a

is conflict equivalent to Hfilt,1‖H1‖ . . . ‖Hi2+1. Therefore, Hfilt,2‖H′
i2,a‖Hi2+1,a

is conflict equivalent to Hfilt,2‖Hfilt,1‖H1‖ . . . ‖Hi2+1 by Proposition 1 since
no events in �h at this point are relevant to Hfilt,2 by R3. Therefore,
Hfilt,2‖Hfilt,1‖H1‖ . . . ‖Hi2+1 is nonblocking since Hfilt,2‖H′

i2,a‖Hi2+1,a is.
• Repeating this process, supervised subsystems and filters are added to the

composition until they have all been addressed. The resulting composition
Hfilt,1‖ . . . ‖Hfilt,k‖H1‖ . . . ‖Hq is, therefore, shown to be nonblocking. ��

4.2 Conflict-equivalence preserving rules

We now need to demonstrate that the control required of these filters is realizable.
For deterministic automata, this corresponds to demonstrating language controlla-
bility. In order to demonstrate this, we will require that our conflict-equivalent ab-
straction satisfies the following property, where Ph : �∗ → (� − �h)

∗ is the natural
projection that erases those events that have been hidden.

Ph(L(H)) = Ph(L(Ha)) (5)

In words, we need that the original and reduced automata generate the same
projected languages. We will specifically demonstrate which rules of Flordal and
Malik (2006) and Flordal (2006) applied in Step 2 of Algorithm 1 achieve the prop-
erty required by Eq. 5. We must first, however, introduce the following equivalence
relation from Flordal and Malik (2006). This relation is employed in some of the
reduction rules to follow. Here the notation q σ⇒ q′ will be employed to denote that
there exists a string s ∈ �∗

τ such that q′ ∈ δ(q, s) and Pτ (s) = σ .

Definition 6 Let G = (Q, �τ , δ, q0, Qm) be an automaton. The binary relation ∼inc⊆
Q × Q is defined such that q ∼inc q′ if:

q0
ε⇒ q ⇐⇒ q0

ε⇒ q′;
∀p ∈ Q and ∀σ ∈ � : p σ⇒ q ⇐⇒ p σ⇒ q′.

The relation ∼inc defines two states as being equivalent if they are reached in the
same observed manner. In a sense, this relation is dual to observation equivalence
where states with the same observed future are equated. The following two rules
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from Flordal and Malik (2006) employ the relation ∼inc to identify conflict-equivalent
states. Two states are defined to be conflict equivalent if they have future behaviors
that cannot be distinguished by conflict equivalence. The reduction of the automaton
model is then achieved by merging conflict-equivalent states.

1) Active Events Rule: Two states that are equivalent with respect to ∼inc and have
the same set of active events are conflict equivalent. The active event set of a
state q is defined here to be those events σ ∈ � for which there exists a string
t ∈ �∗

τ such that δ(q, t)! and Pτ (t) = σ .
2) Silent Continuation Rule: Two states that are equivalent with respect to ∼inc and

from which states without outgoing τ transitions can be reached via a nonempty
sequence of τ transitions, are conflict equivalent.

Observation-equivalence provides another rule for identifying conflict-equivalent
states since observation equivalence implies conflict equivalence (Flordal and Malik
2006).

3) Observation Equivalence Rule: Two states that are observation equivalent are
also conflict equivalent.

The requirement presented in Eq. 5 can now be demonstrated for automata
abstracted by applying the Active Events Rule and the Silent Continuation Rule based
on their reliance on the binary relation ∼inc.

Proposition 2 Let there be two (possibly nondeterministic) automata H and Ha,
where H = (Q, �τ , δh, q0, Qm) and Ha = (Qa, �τ , δa, q0,a, Qm,a) is an abstraction
generated by Algorithm 1. If only the Active Events Rule and the Silent Continuation
Rule are applied in the process of abstraction, then Ph(L(Ha)) = Ph(L(H)), where
Ph : �∗ → (� − �h)

∗.

Proof

• Following the first step of Algorithm 1, let H′ = (Q, �τ , δ
′
h, q0, Qm) be the

automaton generated by replacing those transitions of H that are in �h by the
silent event τ . It is then apparent that:

Ph(L(H′)) = Ph(L(H)) (6)

• Next, assume that Ha is generated from H′ by first merging the single pair of
distinct states q, q′ ∈ Q. See Fig. 3. Since it is assumed that equivalent states are
identified by only the Active Events Rule and the Silent Continuation Rule, we
then have that q ∼inc q′.

• Let l∈�∗
τ be a string accepted by H′ or Ha. We must show that Ph(Pτ (l)) ∈

Ph(L(H′))⇔ Ph(Pτ (l))∈ Ph(L(Ha)). If this property holds for any l, then it holds
for all l, thereby leading to the desired property that Ph(L(Ha))= Ph(L(H)).

Fig. 3 Example of an
abstraction using an
equivalence relation
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Case 1

• Let l be a string that does not pass through either of the states to be
merged (in the case of H′) or through the merged state (in the case of
Ha). It logically follows that Pτ (l) ∈ L(H′) ⇔ Pτ (l) ∈ L(Ha) and further that
Ph(Pτ (l)) ∈ Ph(L(H′)) ⇔ Ph(Pτ (l)) ∈ Ph(L(Ha)).

Case 2

• We will now examine those strings that do pass through one of the states to
be merged (in the case of H′) or through the merged state (in the case of
Ha).

• (⊆) Let l be a string accepted by H′ that passes through at least one of the
states to be merged, q or q′, and may pass through them multiple times.
Without loss of generality, let q be the state of the pair to be merged that
is last visited by the string l and let s ≤ l be the prefix of l that last reaches
q. Therefore, l = st where q ∈ δ′

h(q0, s) and �v ∈ �∗
τ − {ε} such that v ≤ t and

q ∈ δ′
h(q, v).

Merging q and q′ means that if the string l = st is accepted by H′, then l = st is
also accepted by Ha (see Fig. 3). Therefore, Pτ (l) ∈ L(H′) ⇒ Pτ (l) ∈ L(Ha).
Furthermore, Ph(Pτ (l)) ∈ Ph(L(H′)) ⇒ Ph(Pτ (l)) ∈ Ph(L(Ha)). Note, the
acceptance of other instances of the string l by H′ will not affect this result.

• (⊇) Let l be a string accepted by Ha that passes through the merged state q.q′,
possibly multiple times. Without loss of generality, let l1 ≤ l be the prefix of l
that last reaches the merged state. Therefore, l = l1l2 where q.q′ ∈ δa(q0,a, l1)

and �v ∈ �∗
τ − {ε} such that v ≤ l2 and q.q′ ∈ δa(q.q′, v).

Since l = l1l2 is accepted by Ha, l1 is a prefix of some string accepted by H′
that passes through q or q′ and l2 is some continuation that starts at q or
q′ and does not return to q or q′. Let the strings s, s′, s′′, . . . be all of the
traces that satisfy the assumptions on l1 and let the continuations t, t′, t′′, . . .
be all of the traces that satisfy the assumptions on l2. Figure 3 shows one such
example.
Therefore, we must show that for all combinations of strings and continu-
ations {st, s′t, s′′t, . . . , st′, s′t′, s′′t′, . . .} that are accepted by Ha, their projec-
tions are in the language generated by H′. Recall that q ∼inc q′. Referring
to Definition 6, this means that either Pτ (s) = Pτ (s′) = Pτ (s′′) = . . . = ε, or
that s = ru, s′ = ru′, s′′ = ru′′, . . . where p = δ′

h(q0, r) and Pτ (u) = Pτ (u′) =
Pτ (u′′) = . . . = σ for some σ ∈ �. In either case, Pτ (s) = Pτ (s′) = Pτ (s′′) =
. . .. The following equation, therefore, holds for any continuation t:

Pτ (st) = Pτ (s′t) = Pτ (s′′t) = . . . (7)

Since for any continuation t, one element of the set {st, s′t, s′′t, . . .}
must be accepted by H′, Eq. 7 can be employed to show that Pτ (st),
Pτ (s′t), Pτ (s′′t), . . .∈L(Ha)⇒ Pτ (st)= Pτ (s′t)= Pτ (s′′t)= . . . ∈ L(H′). This
logic holds for any continuation t that satisfies the assumptions on l2.
Therefore, we have the desired result that Ph(Pτ (l)) ∈ Ph(L(Ha)) ⇒
Ph(Pτ (l)) ∈ Ph(L(H)).



Discrete Event Dyn Syst

• Taking Case 1 and Case 2 together, since it is true ∀l accepted by H′ or Ha that
Ph(Pτ (l)) ∈ Ph(L(H′)) ⇔ Ph(Pτ (l)) ∈ Ph(L(Ha)), we have that Ph(L(H′)) =
P(L(Ha)) if a single pair of states have been merged.

• If we further abstract Ha by merging another pair of states that satisfy the binary
relationship ∼inc, we can repeat the logic above. Therefore, we can show that
Ph(L(H′)) = Ph(L(Ha)) in general. This in conjunction with Eq. 6, therefore,
proves our ultimate desired result. ��

Similar logic to the above proposition can be employed to show that for two
observation equivalent automata H and Ha, Eq. 5 also holds. This fact is noted by
Su and Thistle (2006). Other rules found in Flordal (2006) can be derived based on
Rules 1–3 mentioned above, therefore, they will also satisfy Eq. 5. In this paper, we
will only apply rules that derive from the three rules mentioned above. If other rules
that meet Eq. 5 can be identified, then they can be employed in our application as
well.

Now recall that a reduced automaton Ha has replaced all hidden events with the τ

event then added self-loops at every state for each hidden event, therefore, none
of the events that have been made silent are relevant to Ha. This in turn means
that P−1

h (Ph(L(Ha))) = L(Ha). Here P−1
h is an inverse projection that expands the

alphabet from (� − �h) to �. In terms of automata, P−1
h adds self loops at every

state for all events in �h. This logic along with Eq. 5 then provides that:

L(Ha) = P−1
h (Ph(L(Ha))) = P−1

h (Ph(L(H))) ⊇ L(H)

Defining the languages marked by these automata as K = Lm(H) and Ka =
Lm(Ha) and assuming the automata are nonblocking, we then have that:

Ka ⊇ K (8)

A final reduction rule of Flordal and Malik (2006), the certain conflicts rule, is not
guaranteed to satisfy the containment of Eq. 8. However, this rule is only relevant to
blocking automata and hence is not employed in our approach. The certain conflicts
rule could be modified to add self-loops for events that have not been hidden in order
to provide the containment of Eq. 8 without affecting conflict equivalence.

Repeated application of Eq. 8 can be used to generate the expression in Eq. 9
where each Ki is either the marked language of a closed-loop module or a coordinat-
ing filter. Below we will show a few steps of the logic that leads us to Eq. 9.

Beginning with the expression K1 ∩ K2 ∩ . . . ∩ Kk−1 ∩ Kk, Eq. 8 can be used to
show that K1,a ⊇ K1 and that K2,a ⊇ K2. Therefore,

K1,a ∩ K2,a ∩ K3 ∩ . . . ∩ Kk−1 ∩ Kk ⊇ K1 ∩ K2 ∩ K3 ∩ . . . ∩ Kk−1 ∩ Kk

Applying Eq. 8 again, we have that (K1,a ∩ K2,a)a ⊇ K1,a ∩ K2,a and that K3,a ⊇
K3. Combining these results with the above expression, we then have that:

(K1,a ∩ K2,a)a ∩ K3,a ∩ . . . ∩ Kk−1 ∩ Kk ⊇ K1 ∩ K2 ∩ K3 ∩ . . . ∩ Kk−1 ∩ Kk
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Repeating the above logic then leads us to Eq. 9 that will be employed in the
proofs of the next section.
(((

. . .
(

K1,a∩K2,a

)

a
∩K3,a

)

a
∩. . .

)

a
∩Kk−1,a

)

a
∩Kk,a ⊇ K1∩K2∩K3∩. . .∩Kk−1∩Kk

(9)

4.3 Controllability

Equation 9 and the following well-known propositions will help to demonstrate
that our filters acting in conjunction with the modular supervisors will be language
controllable with respect to the global uncontrolled plant language L.

The first proposition is a result from Brandin et al. (2004) that is useful in
our incremental approach since it demonstrates that if an allowable language is
controllable with respect to a subset of plant subsystems, it will be controllable with
respect to the global plant.

Proposition 3 (Brandin et al. 2004) Let K, L ⊆ L′ ⊆ �∗ be languages. If K is
language controllable with respect to L′, then K is language controllable with respect
to L.

The next proposition shows that the intersection of two nonconflicting con-
trollable languages is itself controllable. This well-known result can be found in
Cassandras and Lafortune (2007).

Proposition 4 (Cassandras and Lafortune 2007) Let K1, K2, and L ⊆ �∗ be lan-
guages and let K = K1 ∩ K2. If K1 and K2 are nonconflicting and K1 and K2 are
language controllable with respect to L, then K is language controllable with respect
to L.

The following lemma demonstrates language controllability for the conjunction
of a single filter and its associated blocking composition. This result will then be
applied repeatedly to show language controllability of the conjunction of all modular
supervisors and filters. We will denote the languages marked and generated by the
filters Hfilt, j as Kfilt, j = Lm(Hfilt, j) and Kfilt, j = L(Hfilt, j).

Lemma 1 Let Kfilt, K1, K2, . . ., Kk, and L ⊆ �∗ be languages and L be prefix-closed.
Let the subscript a represent an abstraction satisfying Ka ⊇ K. Also let Kfilt, K1, K2,
. . ., Kk be a nonconflicting set. Let �u ⊆ � be the set of uncontrollable events. If Kfilt

is language controllable with respect to L′
a = (. . . (K1,a ∩ K2,a)a ∩ . . .)a ∩ Kk,a and K1,

K2, . . ., Kk are each language controllable with respect to L, then Kfilt ∩ K1 ∩ . . . ∩ Kk

is language controllable with respect to L.

Proof

• It is given that Kfilt is language controllable w.r.t. L′
a:

Kfilt�u ∩ L′
a ⊆ Kfilt



Discrete Event Dyn Syst

• Noting Eq. 9, intersection of both sides of the above with L′ = K1 ∩ K2 ∩ . . . ∩
Kk gives us that:

Kfilt�u ∩ L′ ⊆ Kfilt ∩ L′ (10)

• It is further given that K1, K2, . . ., Kk are each language controllable w.r.t. L.
Hence, L′�u ∩ L ⊆ L′. This fact combined with Eq. 10 gives us that:

Kfilt�u ∩ (L′�u ∩ L) ⊆ Kfilt�u ∩ L′ ⊆ Kfilt ∩ L′

and substituting the expression for L′ we get

(Kfilt ∩ K1 ∩ . . . ∩ Kk)�u ∩ L ⊆ Kfilt ∩ K1 ∩ . . . ∩ Kk

• Also recalling that it is given that the set Kfilt, K1, K2, . . ., Kk is nonconflicting,
we have our desired result:

(Kfilt ∩ K1 ∩ . . . ∩ Kk)�u ∩ L ⊆ Kfilt ∩ K1 ∩ . . . ∩ Kk ��

The following theorem provides the language controllability result for the global
system that we require.

Theorem 2 Let Ki = Lm(Hi) be the language representing the behavior of the ith

subplant L′
i = L(G′

i) under the supervision of the ith modular supervisor where i ∈
{1, . . . , q}. Furthermore, let there be filters Kfilt, j, j ∈ {1, . . . , k}, constructed as part of
Algorithm 2 and satisfying requirements R1 and R2. The conjunction of supervised
languages and filters Kfilt,1 ∩ . . . ∩ Kfilt,k ∩ K1 ∩ . . . ∩ Kq is then language controllable
with respect to the global uncontrolled plant L = L(G) = L′

1 ∩ . . . ∩ L′
q.

Proof

• Each supervised language Ki is language controllable with respect to its asso-
ciated subplant L′

i by construction. Since L ⊆ L′
i for each local subplant, each

closed-loop language is also language controllable with respect to the global
plant L by Proposition 3.

• Let the sets K1, . . . , Ki1 be nonconflicting, where 1 ≤ i1 ≤ q. Since each Ki is lan-
guage controllable with respect to L, K1 ∩ . . . ∩ Ki1 is also language controllable
with respect to L by Proposition 4.

• If i1 = q, then there are no filters and we are done. Otherwise, the filter
Kfilt,1 is needed to resolve the conflict in the composition K′

i1,a ∩ Ki1+1,a, where
K′

i1,a = ((. . . (K1,a ∩ K2,a)a ∩ . . .)a ∩ Ki1,a)a. By R1 and Theorem 1, the set Kfilt,1,
K1, . . . , Ki1+1 is nonconflicting. Also by R2, Kfilt,1 is language controllable
with respect to K′

i1,a ∩ Ki1+1,a, where K′
i1,a = ((. . . (K1,a ∩ K2,a)a ∩ . . .)a ∩ Ki1,a)a.

Therefore, Kfilt,1 ∩ K1 ∩ . . . ∩ Ki1+1 is language controllable with respect to L by
Lemma 1.

• Let Ki1+2, . . . , Ki2 be chosen such that the set Kfilt,1, K1, . . . , Ki1+1, Ki1+2, . . . , Ki2
is nonconflicting, where i1 + 2 ≤ i2 ≤ q. Also, since Kfilt,1 ∩ K1 ∩ . . . ∩ Ki1+1 and
each Ki is language controllable with respect to L, Proposition 4 provides that
Kfilt,1 ∩ K1 ∩ . . . ∩ Ki2 is language controllable with respect to L.
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• If i2 = q, then there are no more filters and we are done. Otherwise, the filter
Kfilt,2 is needed to resolve the conflict in the composition K′

i2,a ∩ Ki2+1,a, where
K′

i2,a = ((. . . (Kfilt,1,a ∩ K′
i1,a)a ∩ Ki1+2,a . . .)a ∩ Ki2,a)a. By R1 and Theorem 1, the

set Kfilt,2, Kfilt,1, K1, . . . , Ki2+1 is nonconflicting. Also by R2, Kfilt,2 is language
controllable with respect to K′

i2,a ∩ Ki2+1,a, where K′
i2,a = ((. . . (Kfilt,1,a ∩ K′

i1,a)a ∩
Ki1+2,a . . .)a ∩ Ki2,a)a. Hence, Kfilt,1 ∩ Kfilt,2 ∩ K1 ∩ . . . ∩ Ki2+1 is language con-
trollable with respect to L by Lemma 1.

• Repeating this logic, supervised modules and filters are added to the compo-
sition until they have all been addressed. The resulting composition Kfilt,1 ∩
. . . ∩ Kfilt,k ∩ K1 ∩ . . . ∩ Kq is, therefore, shown to be language controllable with
respect to L. ��

Theorem 1 and Theorem 2, therefore, provide the desired result that filter laws
represented by deterministic automata and built to satisfy requirements R1, R2, and
R3 provide safe nonblocking control when acting in conjunction with the modular
supervisors.

4.4 Supervisor reduction

A further improvement over Algorithm 2 presented in Section 3 is that in some
instances a closed-loop module Hi can be replaced by a reduction in the sense of Su
and Wonham (2004), prior to the module being abstracted using a conflict-equivalent
abstraction. For a plant G′

i and supervisor automaton Si, Su and Wonham (2004)
shows how to generate a reduced supervisor Ci that provides the same behavior as Si

when acting on the given plant, that is, Ci‖G′
i = Si‖G′

i.
In our procedure, we note that it may be possible to replace a closed-loop

module Hi = Si‖G′
i by the reduced supervisor Ci if the components making up

the associated plant G′
i are included in other plant modules {G′

j| j < i} that have
already been addressed; here it is assumed the modules are addressed in numerical
order. Otherwise stated, Ji ⊆ ∪ j<i J j, where Jk is the set of indices of subplants in
the composition that produces G′

k. The following proposition formalizes this idea
for a situation involving three closed-loop modules and a single filter. Figure 4
can be referenced to help visualize the result. In the following, each of the closed-
loop modules Hi = Si‖G′

i are supervised such that they satisfy the corresponding
specification Ei. The corresponding subplants are defined as G′

1 = G1‖G2, G′
2 =

G3‖G4, and G′
3 = G2‖G3.

Proposition 5 Let H1, H2, and H3 be closed-loop modules. Let C3 be the reduction
constructed in the manner of Su and Wonham (2004) corresponding to the module

Fig. 4 Three specification
example for demonstrating
supervisor reduction

G1 G2 G3 G4E1 E2E3

H1 H2
H3
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H3 = S3‖G′
3 where S3 and G′

3 are respectively the supervisor and plant. Also, let
Hfilt,1 be a filter automaton constructed to satisfy requirements R1 and R3 with
respect to the blocking composition (H1,a‖H2,a)a‖C3,a. If H1‖H2 = H1‖H2‖G′

3, then
Hfilt1

‖(H1,a‖H2,a)a‖C3,a �conf Hfilt1
‖H1‖H2‖H3.

Proof

• Since requirements R1 and R3 are given, the same logic employed in the proof
of Theorem 1 can be applied here to show that

Hfilt1
‖(H1,a‖H2,a)a‖C3,a �conf Hfilt,1‖H1‖H2‖C3 (11)

• Since it is given that H1‖H2 = H1‖H2‖G′
3,

Hfilt,1‖H1‖H2‖C3 = Hfilt,1‖H1‖H2‖G′
3‖C3 (12)

• Since C3 is a reduced supervisor of S3, we further have that H3 = S3‖G′
3 =

C3‖G′
3. Therefore,

Hfilt,1‖H1‖H2‖G′
3‖C3 = Hfilt,1‖H1‖H2‖H3 (13)

• Since equality implies conflict equivalence, by Eqs. 11, 12, and 13 we have the
desired result that

Hfilt1
‖(H1,a‖H2,a)a‖C3,a �conf Hfilt1

‖H1‖H2‖H3 ��

The idea of employing supervisor reduction in conflict resolution was first em-
ployed by Feng (2007) in constructing a different sort of conflict-resolving coordi-
nator. The real advantage of this result is that since the relevant event set of Ci is
smaller than the relevant event set of Hi, more reduction can take place in generating
the conflict-equivalent abstractions of the preceding Hj.

5 State-based filter requirements

In this section we will propose a new set of state-based requirements that are
analogous to the language-based requirements of Section 4 (R1–R3). These new
requirements are necessary because of the nondeterminism introduced into our
models by the process of abstraction. The language-based requirements are not
sufficient to guarantee safe nonblocking control when applied to nondeterministic
filter automata.

5.1 Supervisory control in the presence of nondeterminism

A difficulty that arises in considering how to construct filters is that each blocking
composition B j,a is possibly nondeterministic because of the abstraction employed.
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Determinization is not appropriate in this instance because it can change the blocking
properties of the automaton model. In addition, it can result in a new model with a
state space that is exponentially larger than the original nondeterministic model. To
avoid the determinization process, we need to specify a set of requirements and a
filter construction algorithm that addresses nondeterminism.

An alternate way to think about our problem is that each blocking composition
B j,a is like our uncontrolled plant and we are trying to build a supervisor (the
filter Hfilt, j) to achieve a specification in a nonblocking manner. If we consider our
specification to be the language �∗, then we have a situation where the “plant” is
nondeterministic and the “specification” is deterministic. Of the existing research on
supervisory control in the presence of nondeterminism, some address the situation
where either only the plant is nondeterministic (Kumar and Shayman 1996; Park
and Lim 2000) or only the specification is nondeterministic (Fabian and Lennartson
1996). Still other research allows the supervisors to be nondeterministic but only in
application to partially observed deterministic plants and deterministic specifications
(Inan 1993; Kumar et al. 2005). The works applicable to our situation (Kumar and
Shayman 1996; Park and Lim 2000) demonstrate conditions for supervisor existence,
but do not provide a supervisor construction algorithm.

Another, perhaps more intuitive, way to think about our situation is to consider
our specification to be the trim of B j,a. Therefore, we have a situation where our
“plant” and “specification” are both nondeterministic. Research that addresses this
situation is presented in Overkamp (1997), Zhou et al. (2006) and Heymann and Lin
(1996). The work of Overkamp (1997) only addresses deadlock avoidance and its
construction algorithm for building supervisors has exponential complexity. In the
work of Zhou et al. (2006), conditions are presented under which a supervisor exists
that can achieve behavior that is bisimilar to the given specification. A limitation
of Zhou et al. (2006) is that supervisor synthesis is not addressed other than to
mention that a search can be performed over the cartesian product of the plant and
specification state spaces. The work of Heymann and Lin (1996) handles the situation
of a nondeterministic plant and specification by converting the models to partially
observed deterministic ones. At this point, traditional techniques for control under
partial observation can be applied. This approach could be applied to our situation,
but we hope to avoid the conversion process and the exponential complexity of the
traditional techniques.

As existing works do not provide a methodology for constructing the filters
required by Algorithm 2 with less than exponential complexity, we will propose our
own approach for constructing deterministic filter laws that meet the requirements
R1, R2, and R3. We will represent these deterministic control laws by possibly
nondeterministic automata in order to keep the representation compact and in
order to avoid determinizing the model. One problem that arises is that language
controllability is insufficient to assess the realizability of a control law in regards to
nondeterministic automata, as demonstrated by the following example.

Example 2 Consider the automata in Fig. 5 where G is the plant and H is the
specification and event b is uncontrollable. Since the string ab is in L(G) as well as in
L(H), L(H) is language controllable with respect to L(G). However, the automaton
H still requires that the uncontrollable event b be disabled at state 2.
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Fig. 5 State controllability
example
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5.2 State controllability and observability

One solution to address the limitation of language controllability with respect to
nondeterministic automata is to require a state controllability property similar to
what was done in Fabian and Lennartson (1996) and Zhou et al. (2006). Language
controllability requires that following an observed string s, if there is an uncontrol-
lable continuation σ allowed in the plant automaton, then at least one instance of
σ must be allowed following a string with the same observation s. With the state
controllability property of Fabian and Lennartson (1996) and Zhou et al. (2006), it
is rather required that the continuation σ be allowed following every string with the
observation s. In the case of subautomata as defined below, we can apply a slightly
weaker notion of state controllability.

Definition 7 H = (Qh, �τ , δh, q0h, Qmh) is a subautomaton of G = (Qg, �τ , δg,

q0g, Qmg) denoted H � G if and only if

Qh ⊆ Qg, q0h = q0g, Qmh = Qmg ∩ Qh and
p ∈ δh(q, σ ) ⇒ p ∈ δg(q, σ ).

The idea of this weaker notion is that following a string with an observation s,
we will require that an instance of an uncontrollable event σ must be allowed only
if the event σ is possible in that particular state of the plant automaton. That is, if
there is a string with an observation s that leads to a state in the plant automaton
where σ is not possible, then σ does not have to be enabled at that state. Both state
controllability properties imply language controllability. We will now formally define
our state controllability property for a subautomaton. Recall that the silent event τ

is uncontrollable.

Definition 8 Let �u ⊆ �τ . Subautomaton H of G is state controllable in G if

for all s and q ∈ δh(q0, s), and all σ ∈ �u, δh(q, σ ) = δg(q, σ )

State controllability as a property, however, is not sufficient to provide that the
subautomaton H represents a deterministic control law with respect to G. If the same
observed string leads to two different states, those two states could require conflicting
control actions. As such, we need a new observability-type requirement.
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Definition 9 Let �c ⊆ �. Subautomaton H of G is state observable in G with respect
to the event set �c if

for all s and q ∈ δh(q0, s), and all σ ∈ �c, Pτ (s)σ ∈ L(H) ⇒ δh(q, σ ) = δg(q, σ )

Taken together, state controllability and state observability provide that H
represents a deterministic control law with respect to G. This is demonstrated
formally by the following theorem that shows that a deterministic automaton Hobs

that generates and marks the same languages as H will produce a result that is
bisimulation equivalent to H when it is composed with G. In essence, Hobs can be
considered a deterministic supervisor that achieves the specification represented by
the nondeterministic automaton H for the nondeterministic plant model G. Similar
results for generating control for bisimulation equivalence can be found in Qin and
Lewis (1991), Madhusudan and Thiagarajan (2002) and Tabuada (2004), but none
demonstrate the following specific result. Here we implicitly assume the states of the
automata are reachable.

Theorem 3 Let H = (Qh, �τ , δh, q0, Qmh) and G = (Qg, �τ , δg, q0, Qmg) be (possi-
bly nondeterministic) automata such that H � G and H is state controllable and
state observable with respect to �c in G. Also let �τ = �c∪̇�u where τ ∈ �u. If
Hobs = (Qho, �τ , δho, p0, Qmho) is a deterministic automaton for which L(Hobs) =
L(H) and Lm(Hobs) = Lm(H), then the synchronous composition Hobs‖G =
(Q‖, �τ , δ‖, (p0, q0), Qm‖) is bisimulation equivalent to H.

Proof

• Since H � G, Definition 7 implies that L(H) ⊆ L(G). Also, since L(H) =
L(Hobs), L(Hobs‖G) = L(Hobs) ∩ L(G) = L(H). Therefore, Hobs‖G and H are
equivalent in the sense that they generate the same language. Moreover, we will
show in the following that they are also bisimulation equivalent.

• The automata Hobs‖G and H can be shown to be bisimulation equivalent by
demonstrating that there exists a bisimulation relation between their initial
states. Consider the following candidate relation ∼ over (Qho × Qg) × Qh:

(p, qg) ∼ qh ⇔ qg = qh and there exists t ∈ �∗
τ such that

δho(p0, Pτ (t)) = {p} and qh ∈ δh(q0, t).

• Therefore, we need to demonstrate that the relation ∼ exists for the initial states,
(p0, q0) ∼ q0, and satisfies Points (i) − (iii) of Definition 5. In words, Point (i)
means that if a string takes the state (p0, q0) to a state (p, q) ∈ Q‖, then the same
string must take q0 to the state q ∈ Qh, where the relation ∼ on (p, q) and q exists
and is a bisimulation. Point (ii) likewise means that if a string takes the state q0

to a state q ∈ Qh, then the same string must take (p0, q0) to the state (p, q) ∈ Q‖,
where the relation ∼ on (p, q) and q exists and is again a bisimulation. Point (iii)
further requires that all pairs (p, q) and q have the same marking.

• Since the existence of a bisimulation relation ∼ on the states (p0, q0) and q0

depends on the relation being a bisimulation for states subsequently reached by
the same strings, we will perform this proof by induction on the length of an
arbitrary string t.
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Base Step: String t has length 0, that is, t = ε.
(Point i and Point ii) Based on the definitions of the automata Q‖ and Qh, it
is trivially satisfied that (p0, q0) ∈ δ‖((p0, q0), ε) and q0 ∈ δh(q0, ε). Definition 1
also implies that δho(p0, ε) = {p0} and q0 ∈ δg(q0, ε). Hence, (p0, q0) ∼ q0 also.
(Point iii) We now need to show that (p0, q0) ∈ Qm‖ if and only if q0 ∈ Qmh.

(⇒) Let (p0, q0) ∈ Qm‖. This implies that q0 ∈ Qmg by Definition 1 which
in turn implies that q0 ∈ Qmh by Definition 7 since we already have that
q0 ∈ Qh.
(⇐) Let q0 ∈ Qmh. Definition 1 then implies that q0 ∈ Qmg. Additionally,
since Lm(H) = Lm(Hobs), ε ∈ Lm(H) implies that ε ∈ Lm(Hobs) and thus
p0 ∈ Qmho. Therefore, by Definition 1 (p0, q0) ∈ Qm‖.

Inductive Step: String t = sσ has length n + 1 and is the catenation of the string
s ∈ �∗

τ and the event σ ∈ �τ .
(Point i) Let σ ∈ �τ . We need to show that (p′, q′) ∈ δ‖((p, q), σ ) implies
that q′ ∈ δh(q, σ ) where (p, q) ∈ δ‖((p0, q0), s) and q ∈ δh(q0, s). Additionally,
we need to show the relation ∼ exists on the pair (p′, q′) and q′. Assuming
(p′, q′) ∈ δ‖((p, q), σ ), δho(p, Pτ (σ )) = {p′} and q′ ∈ δg(q, σ ) by Definition 1. The
following then shows that q′ ∈ δh(q, σ ):

—If σ ∈ �u, then q′ ∈ δh(q, σ ) since q′ ∈ δg(q, σ ) and H is state controllable
in G.
—If σ ∈ �c, then Pτ (s)σ = Pτ (sσ) ∈ L(H) since Pτ (s)σ = Pτ (sσ) ∈
L(Hobs‖G) = L(Hobs). Since it is also known that q′ ∈ δg(q, σ ) and H is
state observable in G, we then have that q′ ∈ δh(q, σ ).

This also provides that (p′, q′) ∼ q′.
(Point ii) Now we need to show that q′ ∈ δh(q, σ ) implies (p′, q′) ∈ δ‖((p, q), σ )

and that the relation ∼ exists on the pair (p′, q′) and q′. Since H � G, q′ ∈
δh(q, σ ) implies q′ ∈ δg(q′, σ ) by Definition 7.

—If σ = τ , then Definition 1 provides that (p, q′) ∈ δ‖((p, q), σ ) and we can
let (p′, q′) = (p, q′).
—If σ �= τ , then Pτ (s)σ = Pτ (sσ) ∈ L(H) = L(Hobs). Since Hobs is deter-
ministic, we then have that δho(p, σ ) has a single element that we will call
p′. Therefore, (p′, q′) ∈ δ‖((p, q), σ ) again by Definition 1.

In either case we have that δho(p0, Pτ (sσ)) = {p′} and (p′, q′) ∼ q′.
(Point iii) We now need to show that (p, q) ∈ Qm‖ if and only if q ∈ Qmh.

(⇒) Let (p, q) ∈ Qm‖. This implies that q ∈ Qmg by Definition 1 which in
turn implies that q∈ Qmh by Definition 7 since we already have that q∈ Qh.
(⇐) Let q ∈ Qmh. Definition 7 then implies that q ∈ Qmg. Additionally,
since Lm(H) = Lm(Hobs), Pτ (s) ∈ Lm(H) implies that Pτ (s) ∈ Lm(Hobs)

and thus p ∈ Qmho. Therefore, by Definition 1 (p, q) ∈ Qm‖.

This completes the induction proof.
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• Therefore, the relation ∼ on the initial states, (p0, q0) ∼ q0, exists and is a
bisimulation and Hobs‖G is bisimulation equivalent to H. ��

5.3 State-based requirements

The above theorem allows our filters to now be represented by possibly nondetermin-
istic automata models, Hfilt, j. More specifically, it allows us to replace the language-
based requirements of Section 4 with the following set of state-based requirements:

State-based filter requirements

R1′) Hfilt, j is a nonblocking subautomaton of B j,a

R2′) Hfilt, j is state controllable and state observable in B j,a

R3′) �rel(Hfilt, j) ∩ �h = ∅

These results imply that a determinized version of the automaton Hfilt, j, that
we will denote Hfilt, j,obs, will meet the previously established requirements R1, R2,
and R3. Specifically, conditions R1′ and R2′ together with Theorem 3 imply that
Hfilt, j,obs‖B j,a is nonblocking since it is bisimulation equivalent to Hfilt, j. Therefore,
requirement R1 is satisfied. Furthermore, since Hfilt, j is state controllable in B j,a, the
generated language L(Hfilt, j) is language controllable with respect to L(B j,a). This
then implies that L(Hfilt, j,obs) is also language controllable with respect to L(B j,a),
thereby satisfying requirement R2. Also, R3′ are R3 are equivalent.

Thus far we have demonstrated that determinized versions of the filter automata
Hfilt, j meeting requirements R1′, R2′, and R3′ will provide safe nonblocking control
when acting in conjunction with traditionally built modular supervisors. However,
we would like to avoid the determinization process. Since a nondeterministic filter
automaton Hfilt, j possesses all the information that Hfilt, j,obs does, it turns out that
Hfilt, j,obs never actually has to be constructed. However, the control required by the
automaton Hfilt, j cannot be implemented via the synchronous composition operation.
Rather, following the observation of a string s ∈ �∗, all continuations feasible at all
states reached by strings with the same observation must be allowed. In essence, we
are using Hfilt, j and its transition function δfilt to generate an online implementation
of Hfilt, j,obs. Consider the following mathematical definition of the filter law Hfilt, j :
L(B j,a) → 2�τ that determines which events are to be enabled.

Hfilt, j(s) :=
⋃

q∈T(s)

�Hfilt(q), where T(s) = {q | q ∈ δfilt(q0, t) and t ∈ P−1
τ (s)} (14)

In order to make this more clear, consider the automaton Ga in Fig. 2. If we
consider Ga to be a nondeterministic representation of a deterministic control law,
then following an observation of the string ab we do not know if we are in state
3 or state 4, therefore, we have to allow both event c and event d to occur. The
result of Theorem 3 also allows the composition Hfilt, j,obs‖B j,a to be replaced by the
subautomaton Hfilt, j in the course of Algorithm 2.
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6 Filter law construction

Having established that we can employ filter laws represented by nondetermin-
istic automata, the final question that remains is how to construct Hfilt, j so that
requirements R1′, R2′, and R3′ are satisfied. Since we are ultimately trying to find
a subautomaton, we are in essence trying to solve a state avoidance problem. This
type of problem can be solved by a state-feedback approach to control. In other
words, the control applied depends only on the state the system is in, not on the
path taken to get there. It is well-established that a static control law of this type
is potentially more restrictive than a dynamic control law in the case of partial
observation (Kumar et al. 1993). However, we are willing to make this sacrifice in
order to avoid exponential complexity. In this section we introduce some existing
results on state-based approaches to control that can be employed to generate the
conflict-resolving filters required by the approach of this paper. Additionally, we
develop an improved covering-based approach to control that is less restrictive than
existing state-feedback approaches.

6.1 State-based supervisory control

A state-feedback supervisory controller is a function f : Qg → 2�τ that determines
the set of events to be enabled based on the current state of the system under
control G = (Qg, �τ , δg, q0, Qmg). In the context of our larger approach to conflict
resolution, the “plant” G represents a given blocking composition B j,a. The closed-
loop system f/G then represents the allowable set of states, that is, the subautomaton
representing the coordinating filter Hfilt, j. Assuming q0 ∈ G, f/G is defined itera-
tively as that portion of G that is reachable via transitions that are allowed by f :

Definition 10

f/G = (Q f , �τ , δ f , q0, Qmf ) (15)

Iterative Definition of f/G:

Step 1: q0 ∈ Q f .
Step 2: If q ∈ Q f and δg(q, σ )! for some σ ∈ f (q), then q′ ∈ Q f , ∀q′ ∈ δg(q, σ ).

Also, δ f (q, σ ) = δg(q, σ ). Otherwise, δ f (q, σ ) is empty.
Step 3: Every state in Q f and every transition for which δ f is nonempty is obtained

as in Step 1 and Step 2. Also, Qmf = Q f ∩ Qmg.

Note from the above definition that all of the states of f/G are reachable and
inherit their marking from G. The existence of a state-feedback controller that can
keep the behavior of G within a set of “good” states represented by the subset Qh ⊆
Qg requires a property called �u-invariance (Ramadge and Wonham 1987). In terms
of nondeterministic automata and the notation of this paper, �u-invariance of a state
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set Qh ⊆ Qg is equivalent to the state controllability of a subautomaton of G, H =
(Qh, �τ , δh, q0, Qmh). If the state space of G is not fully observable, then additional
considerations must be addressed.

In existing work on state-feedback control under partial observation, the concept
of a “mask” is employed. A mask M is defined as a function M : Qg → Y that
maps elements from the state space Qg to the observation space Y. Under partial
observation two states q and q′ might not be distinguishable, that is, they could have
the same observation M(q) = M(q′) = y. It is then necessary that the state-feedback
control f (q) be determined based on M(q). Specifically, it is required that:

For any q, q′ ∈ Qg, M(q) = M(q′) ⇒ f (q) = f (q′) (16)

In existing state-feedback work (Li 1991; Takai and Kodama 1998) it is assumed
the mask M is given. In this paper we will assume the mask M is constructed to satisfy
the following constraint.

The mask M : Qg → Y is defined such that if ∃s, s′ ∈ �∗
τ with

q ∈ δg(q0, s), q′ ∈ δg(q0, s′) and Pτ (s) = Pτ (s′), then M(q) = M(q′). (17)

In the above, states q ∈ δg(q0, s) and q′ ∈ δg(q0, s′) for which Pτ (s) = Pτ (s′) are
defined to be indistinguishable. In other words, two states that are reached by strings
that have the same projection are indistinguishable and the mask M is constructed
such that all indistinguishable states map to the same observation under M.

Of the existing work for generating state-feedback control under partial ob-
servation, the least restrictive control strategy is proposed in Takai and Kodama
(1998) and builds off the prior results of Takai et al. (1995) and Takai and Kodama
(1997). We will now outline their strategy using notation consistent with this paper
and extensions we have added to handle nondeterminism. Specifically, Takai and
Kodama (1998) presents an algorithm for constructing a state-feedback controller
that satisfies Eq. 16. This algorithm is based on the following sets AH(q) ⊆ �c

that define which events must be disabled at state q for a set of allowable states
represented by the subautomaton H � G. In essence, the sets AH(q) capture which
events at a given state will cause a violation of the observability-type property
captured by Eq. 16.

AH(q)={σ ∈ �c | (∃q′ ∈ Qh) : [M(q)= M(q′)] ∧ [∃p∈δg(q′, σ ) such that p /∈ Qh]}
(18)

In the above equation, AH(q) is also defined for q′ = q since a state is always
considered indistinguishable from itself, that is, M(q) = M(q). The resulting state-
feedback control law is thus defined:

f (q) = �τ − AH(q) (19)

In order to guarantee that the control law defined by Eq. 19 is able to achieve the
specification required by the subautomaton H, Takai and Kodama (1998) requires
the following property in addition to �u-invariance:

Qh ⊆ R(Qh) (20)
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In the above, R is a transformation that represents which states of H are reachable
by permissible transitions, that is, those transitions that are not prohibited by the sets
AH(q). Recall, the sets AH(q) enforce the observability-type requirement prescribed
in Eq. 16. If q0 /∈ Qh, then R(Qh) = ∅. Otherwise, the set of states represented by
R(Qh) can be constructed iteratively in a similar manner to Takai and Kodama
(1998):

Algorithm 3 R(Qh) Construction

Step 1: q0 ∈ R(Qh).
Step 2: If q ∈ R(Qh) and δg(q, σ ) ⊆ Qh for some σ ∈ �τ − AH(q), then q′ ∈

R(Qh) ∀q′ ∈ δg(q, σ ).
Step 3: Every state satisfying R(Qh) is obtained as in Step 1 and Step 2.

A specification represented by the set of states Qh that is �u-invariant and satisfies
Eq. 20 is defined to be M-controllable in Takai et al. (1995). The work of Takai
et al. (1995) further demonstrates that a state-feedback controller that can achieve
the behavior prescribed by the state set Qh exists if and only if the state set is
M-controllable. In particular, the control law given by Eq. 19 will achieve the M-
controllable state set Qh and is further the supremal state-feedback control law that
satisfies Eq. 16.

If a given state set is not M-controllable, then Takai and Kodama (1998) prescribes
an approach for finding an M-controllable subset, R(Q↑

h). Here the ↑ operation
generates the supremal �u-invariant subset of states constructed according to
Ramadge and Wonham (1987). While the resulting R(Q↑

h) is not necessarily maximal
or supremal, it does represent a larger state set than can be achieved by other existing
state-feedback approaches Li (1991); Takai and Kodama (1997).

The subautomaton that results from the state-feedback controller of Takai and
Kodama (1998) can be shown to be state controllable and state observable in G.
Therefore, the results given above could be directly applied to the construction
of filters required by our approach to conflict resolution. In the next section,
however, we will propose an improved covering-based approach that generates a
more permissive control law than Takai and Kodama (1998).

6.2 Covering-based supervisory control

Our improvement over Takai and Kodama (1998) derives from the fact that the
requirement of Eq. 16 is stronger than necessary for the achievement of state
observability. Therefore, we can apply a new covering-based approach that will result
in a less restrictive control law. In this section we will additionally address blocking.

The observability-type requirement Eq. 16 is too strong based on the character
of the mask M. The fact that M is a function implies that when the state space is
observed through this mask it is effectively partitioned into disjoint sets of states
that have the same observation. For example, if q and q′ have the same observation
M(q) = M(q′), and q′ and q′′ have the same observation M(q′) = M(q′′), it then
follows that q and q′′ must have the same observation M(q) = M(q′′). Therefore,
all three states q, q′, and q′′ must be in the same partition of the state space. For
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achievement of state observability, however, it may not be necessary that the same
control action be applied at q and q′′ if they are not indistinguishable. In other words,
if the observed string that reaches q and q′ is different than the observed string that
reaches q′ and q′′, then the control applied at q and q′′ may be allowed to be different.
Figure 6 illustrates this situation where σ is disabled at q′′, but need not be disabled at
q since these states are not both reached by the same observed string. In essence, we
would like to base our control on a covering of the state space rather than a partition
like that imposed by the mask M. If the event σ was possible at the state q′, then σ

would need to be disabled at all three states for our covering-based approach too.
In order to present our covering-based approach, we will employ the mapping IH

defined as follows:

Definition 11 Let IH : Qh → 2Qh be a mapping defined ∀q, q′ ∈ Qh as follows: q′ ∈
IH(q) if q and q′ are indistinguishable, that is, if ∃s, s′ ∈ �∗

τ such that q ∈ δh(q0, s),
q′ ∈ δh(q0, s′), and Pτ (s) = Pτ (s′).

Whereas the mask M represents an equivalence relation on the states of an
automaton that is by definition reflexive, symmetric, and transitive, the mapping IH

represents a relation that is reflexive and symmetric, but not necessarily transitive.
Reflexivity is apparent based on the fact that a state q is always considered indis-
tinguishable from itself, that is, q ∈ IH(q). Symmetry can be seen from the fact that
q ∈ IH(q′) implies q′ ∈ IH(q). Transitivity, however, is not guaranteed. For example,
q ∈ IH(q′) and q′ ∈ IH(q′′) does not necessarily imply that q ∈ IH(q′′). The notion of
transitivity is discussed further below.

With IH , we can then define new sets of prohibited events, A′
H(q) ⊆ �c. At a

state q in the uncontrolled plant G, a controllable transition σ that is defined in
the uncontrolled plant G is prohibited if it leads to a state outside of Qh or if it is
prohibited at a state q′ that is indistinguishable from q in H.

Since the definition of prohibited events at a state q, A′
H(q), depends on the

prohibited events of other states, each set A′
H(q) is constructed iteratively. In words,

if there is a string of indistinguishable states defined:

q ∈ IH(q′), q′ ∈ IH(q′′), . . . , q(m−1) ∈ IH(q(m))

each with σ possible in G and such that σ is not possible in H at q(m), then σ is again
added to A′

H(q). This construction indicates a transitivity similar to that imposed

Fig. 6 Example of a covering
for indistinguishable states
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 q

 q

 q

 q
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σ

 σ
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by M, except that here the transitivity is limited to indistinguishable states where
σ is possible in G. Assuming the mapping IH is given, A′

H(q) can be constructed
according to Algorithm 4 given below. The mapping IH can be constructed with
polynomial complexity using results from Wang et al. (2007).

Algorithm 4 Prohibited Events Determination

Input: automaton G, subautomaton H � G and mapping IH : Qh → 2Qh

For each q ∈ Qh

For each event σ ∈ �G(q) ∩ �c

If ∃p ∈ δg(q, σ ) such that p /∈ δh(q, σ ) then
add σ to the set of prohibited events at q, A′

H(q) ← {σ } ∪ A′
H(q).

End if
If σ ∈ A′

H(q) then
define a set of states T that is initialized with the state q, T ← {q}. Also
let M : Qh → {0, 1} be a partial function marking whether or not states in
the set T have been addressed yet. Set M(q) = 0.
For each q′ ∈ T with M(q′) = 0

For each q′′ ∈ IH(q′) that is not in T
If δg(q′′, σ )! then

add state q′′ to the set T, T ← {q′′} ∪ T, and add event σ to
the set of prohibited events at q′′, A′

H(q′′) ← {σ } ∪ A′
H(q′′). Set

M(q′′) = 0.
End if

End for
Set M(q′) = 1.

End for
Clear T and M.

End if
End for

End for
Output: the sets A′

H(q)

Algorithm 4 has complexity O(mn2) where m is the cardinality of the event set
and n is the cardinality of the state space. Assuming the subautomaton H has a finite
number of transitions, this algorithm will terminate in finite time. The sets A′

H(q)

defined by Algorithm 4 satisfy the following equation by construction:

A′
H(q) = {σ ∈ �c | (∃q′ ∈ Qh) : [δg(q, σ )!] ∧ [q′ ∈ IH(q)] ∧ [(∃p ∈ δg(q′, σ )

such that p /∈ Qh) ∨ (σ ∈ A′
H(q′))]} (21)

In order to explicitly compare the sets AH(q) and A′
H(q), we now define the

following mapping JH that reflects the partition implicitly imposed by a given mask
M on the state set Qh:

Definition 12 Let JH : Qh → 2Qh be a mapping defined ∀q, q′ ∈ Qh as follows: q′ ∈
JH(q) if M(q) = M(q′).
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The definition of AH(q) given in Eq. 18 can then be rewritten in terms of the
mapping JH as follows:

AH(q) = {σ ∈ �c | (∃q′ ∈ Qh) : [q′ ∈ JH(q)] ∧ [∃p ∈ δg(q′, σ ) such that p /∈ Qh]}
(22)

It can then be shown that A′
H(q) ⊆ AH(q). Let σ be an arbitrary event in A′

H(q).
By Eq. 21, there exists a state q′ ∈ Qh that is indistinguishable from q (q′ ∈ IH(q))
such that either σ leads from q′ to a state outside of Qh or σ is prohibited at q′
(σ ∈ A′

H(q′)). If it is the former, then σ ∈ AH(q) based on Eq. 22 and the fact that
q′ ∈ JH(q) since IH(q) ⊆ JH(q). If it is the latter, then by recursive application of
Eq. 21 there exists a chain of indistinguishable states leading to a state q′′ for which σ

does lead to a state outside of Qh. The construction of the sets A′
H(q) by Algorithm 4

guarantees that for this latter case such a state q′′ exists in the chain. Furthermore, as
only automata with finite state spaces are addressed by the work of this paper, this
chain will terminate in a finite number of steps. Since the mask M imparts a partition
on the state space, M(q) = M(q′′) and q′′ ∈ JH(q) thereby implying σ ∈ AH(q) based
on Eq. 22. These facts together provide the desired result that A′

H(q) ⊆ AH(q).
This new A′

H(q) can then be employed to generate a new transformation R′. R′ is
defined in the same manner as Algorithm 3 that constructs R except for the different
definition of prohibited events that is employed. R′ is again a transformation that
retains those states of H that are reachable by permissible transitions. As we
construct the state set R′(Qh) below, we will additionally construct an associated
subautomaton of H, R′(H), with a state set R′(Qh) and a transition function δR′ .
Based on our definition of a subautomaton given in Definition 7, the marking of
R′(H) will be consistent with the marking of H. The use of A′

H(q) in the construction
process will result in the transformed subautomaton R′(H) being state observable
in G.

If q0 /∈ Qh, then R′(Qh) = ∅. Otherwise, R′(Qh) and R′(H) are constructed as
follows:

Algorithm 5 Construction of R′(Qh) and R′(H)

Step 1: q0 ∈ R′(Qh).
Step 2: If q ∈ R′(Qh) and δg(q, σ ) ⊆ Qh for some σ ∈ �τ − A′

H(q), then q′ ∈
R′(Qh) ∀q′ ∈ δg(q, σ ) and δR′(q, σ ) = δg(q, σ ). Otherwise, δR′(q, σ ) is
empty.

Step 3: Every state satisfying R′(Qh) and every transition for which δR′ is nonempty
is obtained as in Step 1 and Step 2.

From the above algorithm and employing logic from Takai et al. (1995), for any
q ∈ R′(Qh) − {q0}, there exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ �τ satisfy-
ing the following conditions:

C1.1) δg(qi, σi) = qi+1 for i = 0, 1, . . . , m − 1
C1.2) qi ∈ Qh for i = 0, 1, . . . , m
C1.3) σi ∈ �τ − A′

H(qi) for i = 0, 1, . . . , m − 1
C1.4) qm = q
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The following result that employs the logic of Lemma 1 in Takai and Kodama
(1997) can now be presented.

Proposition 6 For any subautomaton H � G

R(Qh) ⊆ R′(Qh) (23)

Proof If q0 /∈ Qh, then R(Qh) = R′(Qh) = ∅. Consider the case that q0 ∈ Qh. Since
A′

H(q) ⊆ AH(q) for any q ∈ Qh, we have R(Qh) ⊆ R′(Qh). ��

Although the result of R(Q↑
h) represents a larger state set than can be achieved

by any prior state-feedback work, Proposition 6 demonstrates that we can generate
a potentially larger state set R′(Q↑

h) ⊇ R(Q↑
h). This together with the example of

Section 6.4 shows that our covering-based approach is less restrictive than existing
state-feedback approaches.

6.3 Covering-based filter construction

In this section we will specify how the subautomaton R′(H↑) is constructed. Here
R′(H↑) is defined according to Algorithm 5, where H↑ � H is the subautomaton
that possesses the state set Q↑

h . Specifically, the transition structure of H↑ is defined
such that it includes all transitions of H for which the source state q and destination
state q′ ∈ δh(q, σ ) are in Q↑

h .
Since a subautomaton R′(H↑) will be employed to represent each coordinating

filter, we must first demonstrate that R′(H↑) is state observable and state controllable
in its associated G. We will specifically show that state observability holds directly as
a result of the R′ transformation. We will then demonstrate that the R′ operation
did not destroy the state controllability achieved by the ↑ operation. In order to
accomplish this goal, we first propose the following hypothetical state-feedback
control law f ′ that achieves the specification R′(Q↑

h); though, our covering-based
law will be ultimately be implemented according to Eq. 14.

f ′(q) = �τ − A′
H↑(q) (24)

The subautomaton of G, f ′/G = (Q f ′ , �τ , δ f ′ , q0, Qmf ′), is defined in the same
manner as Definition 10. Also, for any state q ∈ Qg − {q0} that is also in Q f ′ ,
there exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ �τ satisfying the following
conditions (Li and Wonham 1993):

C2.1) qi+1 ∈ δg(qi, σi) for i = 0, 1, . . . , m − 1
C2.2) σi ∈ f ′(qi) for i = 0, 1, . . . , m − 1
C2.3) qm = q

Based on the manner in which the sets A′
H↑(q) are constructed, it can also be seen

that the following relation is implied where I f ′ is defined for the automaton f ′/G.

For any q, q′ ∈ Q f ′ with q′ ∈ I f ′(q), σ ∈ f ′(q) ∩ �G(q) ⇒ σ ∈ f ′(q′) (25)
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The above then leads to a result that is similar to Eq. 16:

For any q, q′ ∈ Q f ′ , q′ ∈ I f ′(q) ⇒ f ′(q) ∩ �G(q) ∩ �G(q′)= f ′(q′) ∩ �G(q) ∩ �G(q′)

(26)

The above expression captures that the control applied by f ′ is consistent between
states that are indistinguishable for those feasible events that are shared between
the states. The limitation of consistency to those feasible events shared between
states demonstrates the limited transitivity that provides the improvement of our
covering-based approach. With the above property, we can now demonstrate that
state observability is achieved.

Proposition 7 The state-feedback law f ′ given by Eq. 24 generates a subautomaton
f ′/G that is state observable in G.

Proof

• Let q ∈ δ f ′(q0, s), σ ∈ �c, Pτ (s)σ ∈ L( f ′/G) and p ∈ δg(q, σ ).
• Pτ (s)σ ∈ L( f ′/G) implies there exists an s′ ∈ �∗

τ and q′ ∈ δ f ′(q0, s′) for which
Pτ (s′) = Pτ (s) and σ ∈ f ′(q′).

• Since Pτ (s′) = Pτ (s), q′ ∈ I f ′(q). Therefore, we have that f ′(q) ∩ �G(q) ∩
�G(q′) = f ′(q′) ∩ �G(q) ∩ �G(q′) by Eq. 26.

• Since σ ∈ f ′(q′) ∩ �G(q) ∩ �G(q′), σ ∈ f ′(q) ∩ �G(q) ∩ �G(q′) also.
• Since σ ∈ f ′(q) and p ∈ δg(q, σ ), p ∈ δ f ′(q, σ ) by definition of δ f ′ . Thus we have

shown that f ′/G is state observable in G. ��

This control law f ′ achieves the set of states R′(Q↑
h). This fact is mathematically

represented Q f ′ = R′(Q↑
h) and is proven in the following proposition employing

logic from Theorem 1 of Takai et al. (1995):

Proposition 8 If for the subautomaton H � G, q0 ∈ H↑ and f ′ is given by Eq. 24,
then Q f ′ = R′(Q↑

h).

Proof By assumption, q0 ∈ H↑. Step 1 of Algorithm 5 then provides that q0 ∈
R′(Q↑

h). Additionally, since f ′ only disables transitions, q0 will be reachable under
control. That is, q0 ∈ Q f ′ .

(⊆) We will next show that Q f ′ ⊆ R′(Q↑
h). Let q ∈ Q f ′ . For any q ∈ Q f ′ − {q0},

there exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ �τ satisfying conditions (C2.1-
C2.3). By induction on the index of the states in this chain, we can then show that
q ∈ R′(Q↑

h). For the basis step, we already have q0 ∈ R′(Q↑
h). For the induction

step, suppose that qk ∈ R′(Q↑
h) ⊆ Q↑

h . We now want to show that qk+1 ∈ δg(qk, σk) ⊆
R′(Q↑

h). Consider two cases:

1) If σk ∈ �u, we then have that qk+1 ∈ δg(qk, σk) ⊆ Q↑
h since qk ∈ Q↑

h and Q↑
h is

�u-invariant. Furthermore, since σk ∈ �u we have that σk /∈ A′
H↑(qk). Therefore,

qk+1 ∈ δg(qk, σk) ⊆ R′(Q↑
h) by Step 2 of Algorithm 5.
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2) If σk ∈ �c, then by condition C2.2 and Eq. 24, we have σk ∈ f ′(qk) = �τ −
A′

H↑(qk). Therefore, by Step 2 of Algorithm 5 we again have that qk+1 ∈
δg(qk, σk) ⊆ R′(Q↑

h).

This completes the induction.
(⊇) We will now show that Q f ′ ⊇ R′(Q↑

h). Let q ∈ R′(Q↑
h). For any q ∈ R′(Q↑

h) −
{q0} there exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ �τ satisfying conditions
analogous to (C1.1-C1.4), but for Q↑

h instead of Qh. Since q ∈ R′(Q↑
h) implies q ∈ Qg,

to show that q ∈ Q f ′ , it is sufficient to prove that σi ∈ f ′(qi)(i = 0, 1, . . . , m − 1). By
condition C1.3 and Eq. 24, we have σi ∈ �τ − A′

H↑(qi) = f ′(qi). ��

Based on the above proposition and its proof, we have that q0 ∈ R′(Q↑
h) and that

Q f ′ = R′(Q↑
h), therefore, R′(Q↑

h) is �u-invariant by Theorem 6 of Li and Wonham
(1993). This in turn implies that the associated subautomaton f ′/G = R′(H↑) is state
controllable in G. Therefore, we have demonstrated that R′(H↑) is state controllable
and state observable in G. The only property that has not been addressed yet is
blocking. By construction, the marking of R′(H↑) is consistent with the marking of
G. Taking the trim of R′(H↑) makes the subautomaton nonblocking. In this instance,
the trim operation will simply remove those states of R′(H↑) that are blocking.
This, however, can destroy state controllability and/or state observability. Therefore,
following the trim operation, it may be necessary to repeat the ↑ and R′ operations
again. A summary of this algorithm is given below.

We can then employ the resulting automaton as our filter Hfilt, j and can implement
our filter law Hfilt, j according to Eq. 14. Note, the hypothetical state-feedback law f ′
working under full observation achieves the same behavior as the covering-based law
of Eq. 14 under partial observation.

Algorithm 6 Filter Law Construction

Step 1: Given a blocking automaton G = B j,a, let the subautomaton H = trim(G)

be our “specification.”
Step 2: Find Q↑

h , the supremal �u-invariant subset of Qh. The algorithm of Ra-
madge and Wonham (1987) can be employed. Let H↑ be the subautomaton
with the state set corresponding to Q↑

h .
Step 3: Construct the mapping IH↑ of indistinguishable states of the subautomaton

H↑. The algorithm of Wang et al. (2007) can be used for this purpose.
Step 4: Construct the sets of prohibited transitions A′

H↑(q) to satisfy Eq. 21.
Algorithm 4 can be employed.

Step 5: Follow Algorithm 5 to construct the state set R′(Q↑
h) and subautomaton

R′(H↑).
Step 6: If the subautomaton R′(H↑) is nonblocking, then this represents our filter

automaton Hfilt, j and we are done. Otherwise, redefine H = trim(R′(H↑))

and return to Step 2.

In the above, Step 3 and Step 4 could be addressed simultaneously by a single
algorithm. The end result of this procedure is a (possibly nondeterministic) sub-
automaton Hfilt, j that satisfies requirements R1′, R2′, and R3′ with respect to the
blocking automaton G = B j,a.
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Each step in the above procedure has polynomial complexity in the number
of states and transitions of the initial automaton, therefore, each iteration of the
algorithm will also have polynomial complexity. In addition, each pass through the
algorithm either removes a state from the subautomaton or reaches a fixpoint. As-
suming the initial automaton has a finite number of states, at most n iterations must
be performed where n is the number of states in the initial automaton. Therefore,
the overall complexity of the algorithm is polynomial. The resulting coordinating
filter law produces more permissive control than existing state-feedback approaches,
but it is not necessarily maximal. This fact is demonstrated by Remark 4 following
the example of the next section.

6.4 Filter construction example

The following example helps to illustrate our filter construction procedure intro-
duced in Algorithm 6 of the previous section.

Example 3 Consider the blocking automaton G pictured on the left of Fig. 7 with
event set partitioned into controllable and uncontrollable events as follows, �c =
{a, b , c, d, f } and �u = {e, τ }. By Step 1 of Algorithm 6, our specification H0 =
trim(G) is a subautomaton of G where the blocking state 9 has been removed.
Since state 8 of H0 then requires that the uncontrollable event e be disabled, the
↑ operation of Step 2 will remove state 8 resulting in the subautomaton H↑

0 .
Following Step 3 of Algorithm 6, the mapping IH↑

0
representing which states are

indistinguishable is then constructed. We will represent IH↑
0

as Table 1 that was
constructed using the algorithm from Wang et al. (2007). Specifically, the left-hand
column enumerates each state q in the state space of H↑

0 and the center column lists
the corresponding set of indistinguishable states IH↑

0
(q).

Step 4 of Algorithm 6 then constructs the sets A′
H↑

0

(q). Examining state 3,

δg(3, b) = 8 ∈ Qg, but 8 /∈ Q↑
H0

, therefore, b ∈ A′
H↑

0

(3). It then follows that b is also

b
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Table 1 Table representing
the maps IH↑

0
and A′

H↑
0

q IH↑
0
(q) A′

H↑
0

(q)

0 0, 3, 6, 7
1 1
2 2, 3, 7
3 3, 2, 5, 6, 7, 0 b
4 4, 5
5 5, 4, 3
6 6, 7, 3, 0
7 7, 6, 3, 0, 2 b

in the set A′
H↑

0

(7) since b is defined at state 7 and 7 ∈ IH↑
0
(3). Since there are no other

states in IH↑
0
(3) or IH↑

0
(7) for which a b event is defined, and since there are no other

events actively disabled by H↑
0 , all the sets A′

H↑
0

(q) are now completely defined. Step

5 of the algorithm then applies the transformation R′. Since δg(7, b) = 0 ∈ Q↑
H0

and

b ∈ A′
H↑

0

(7), event b must be disabled at state 7. The resulting subautomaton R′(H↑
0 )

is displayed on the right-hand side of Fig. 7.
According to Step 6, since R′(H↑

0 ) is blocking, we must then take the trim and start
over at Step 2 of the algorithm. Let H1 = trim(R′(H↑

0 )) and refer to the left-hand side
of Fig. 8 for an illustration.

Since the only actively disabled events b , d, and f are controllable, the ↑ operation
does not remove any states, H↑

1 = H1. We now construct the map IH↑
1
; the result is

shown below in Table 2.
Next we build the sets A′

H↑
1

(q). Noting which transitions of G are not included in

H↑
1 allows us to determine that f ∈ A′

H↑
1

(0), b ∈ A′
H↑

1

(3), and d ∈ A′
H↑

1

(5). Examining

the table describing the mapping IH↑
1
, we then also have that f ∈ A′

H↑
1

(3) since 3 ∈
IH↑

1
(0) and δg(3, f )!. Likewise, d ∈ A′

H↑
1

(4) since 4 ∈ IH↑
1
(5) and δg(4, d)!.
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Table 2 Table representing
the maps IH↑

1
and A′

H↑
1

q IH↑
1
(q) A′

H↑
1

(q)

0 0, 3 f
1 1
2 2, 3
3 3, 2, 5, 0 b, f
4 4, 5 d
5 5, 4, 3 d

Now according to Step 5 we construct R′(H↑
1 ). First, note that one instance of a d

event is disabled at state 5 according to H↑
1 , therefore, the remaining d transition at

state 5 must also be disabled. Since δg(3, f ) = 2 ∈ Q↑
H1

and f ∈ A′
H↑

1

(3), the f event

at state 3 must also be disabled. Likewise, the d event at state 4 must be disabled. The
resulting R′(H↑

1 ) is shown on the right-hand side of Fig. 8. Since this subautomaton is
nonblocking, we are done. Therefore, our deterministic filter law Hfilt is represented
by the nondeterministic automaton Hfilt = R′(H↑

1 ) that satisfies requirements R1′,
R2′, and R3′.

In view of the above example, we make the following observations regarding the
new results presented in this section.

Remark 2 In traditional state-feedback control employing a mask M, states 3 and
4 would be in the same partition since state 3 is indistinguishable from state 5 and
state 5 is indistinguishable from state 4. Therefore, traditional approaches would
have disabled the b event at state 4. This example along with Eq. 23 demonstrates
the advantage of our covering-based approach over the state-feedback control
approaches of Li (1991) and Takai and Kodama (1998).

Remark 3 Our approach, however, still produces a static control law with respect to
the those events feasible at a given state. For example, if for some reason the b event
at state 3 needed to be disabled following the string ab , but not following the string
abca, our covering-based control law would not be able to make that distinction. This
more restrictive control law is again chosen to avoid the exponential complexity that
would come with implementing an event-feedback law.

Remark 4 If we had recalculated the mapping I after the event d at state 5 was
disabled, then states 0 and 3 would no longer be indistinguishable. This new I
mapping would then not have required that the f event at state 3 be disabled. If
we allowed the I mapping to change within the calculation of the transformation
R′, then the resulting subautomaton would be dependent on the order in which the
states were addressed. This dependence is an issue common also to event-feedback
approaches to control under partial observation.

Remark 5 We have shown that our covering-based approach is an improvement over
the state-feedback approach proposed by Takai and Kodama (1998). The approach
of Takai and Kodama (1998) in turn has been shown to provide more permissive
control than the construction of the supremal controllable and normal subset of states
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presented in Li (1991). Namely, if for all q in the allowed state set the set M−1(M(q))

is a subset of the allowed state set, where

M−1(M(q)) = {q′ | M(q) = M(q′)},

then the state set is normal. The example of this subsection, therefore, shows how the
approach of Li (1991) is more restrictive than our approach. Since in our example
states 0 and 6 are reached by the same string abcd, they both have the same
observation under M, but state 0 is in the state set R′(Q↑

H1
) while state 6 is not.

Therefore, the state set R′(Q↑
H1

) violates normality. Construction of the supremal
normal and controllable subset of states would then require removal of state 0
leading to an empty state set.

7 Application to a flexible manufacturing system (FMS)

In this section we will demonstrate the approach of this paper for generating
nonblocking modular supervisory control through a Flexible Manufacturing System
(FMS) example.

Example 4 The FMS we will specifically employ is a reduced version of the system
given in de Queiroz et al. (2005) and is shown in Fig. 9. The basic idea is that parts
enter from the left via the conveyor Con2. From Con2 the parts pass through buffer
B2 to a handling robot. This robot then passes parts, through buffer B4, to a lathe that
can generate two different types of parts. After the lathe has finished an operation
and returned a part to the robot, again through buffer B4, the robot then passes the
part to either buffer B6 or buffer B7 depending on the part type. If passed to B7, the
part is then sent to a painting machine PM via conveyor Con3 and buffer B8. Once
the painting operation is finished, the part is passed back through the same sequence
by which it arrived. From buffers B6 and B7, the two different parts are passed to the
machine AM for finishing.

Fig. 9 Flexible manufacturing
system (FMS) Robot AM
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Fig. 10 Automata modeling
the components of the
open-loop plant

 I W

 Con2 :

 I W

 PM :

 Con3 :

 I

F

B

 AM :

 Lathe :

 I

W

W

 1

 2

 Robot :

I F 2

 37

 38

F

F

 1

 3

 33

 34

 39

 30

 51

 54

 53

 52

 71

 74

 73

 72

 81

 82

 21

 22

 0 1

2

3

 61

 63

 64

 65

 66

The machines Con2, Robot, Lathe, Con3, PM, and AM can be thought of as
components of the open-loop plant. The automata models for these machines are
given Fig. 10.

The buffers B2, B4, B6, B7, and B8 can be thought of as the component specifi-
cations for the system where it is desired that the buffers not underflow or overflow.
The automata models for these machines are given Fig. 11. In these automata odd

Fig. 11 Automata modeling
the component buffer
specifications
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labels represent controllable events and even labels represent uncontrollable events.
Furthermore, all automata have the same event set �τ , though only relevant events
are pictured.

Following Algorithm 2 of Section 3, the first step is to generate a set of local
modular supervisory controllers. We will ultimately choose to address the buffer
specifications in the order B7 → B6 → B4 → B8 → B2. Specifically, H1 is the
automaton representation of the supervised module corresponding to specification
B7 and subplant G′

1 = Robot‖AM‖Con3. Likewise, H2 to corresponds to the spec-
ification B6 and subplant G′

2 = Robot‖AM, H3 to specification B4 and subplant
G′

3 = Robot‖Lathe, H4 to specification B8 and subplant G′
4 = Con3‖PM, and H5

to specification B2 and subplant G′
5 = Con2‖Robot.

Recognizing that the plant components making up G′
2 are a subset of the plant

components making up G′
1, we have in this instance that H1‖G′

2 = H1 and can
employ a reduction for H2 based on the logic of Proposition 5. We will denote the
resulting reduction C2. In order to make the connection to Proposition 5 more clear,
the H1 of this example corresponds to the H1‖H2 of Proposition 5, while the H2

of this example corresponds to the H3 of Proposition 5. While the original closed-
loop module H2 of this example has 28 states and 71 transitions, its reduction C2 can
be represented by an automaton with 2 states and 3 transitions. Furthermore, the
events 61, 64, 65, and 66 are not relevant to C2, though they were to H2. This result
demonstrates how the use of supervisor reduction can result in fewer shared relevant
events, thereby allowing additional abstraction in the preceding modules.

Step 2 then instructs us to generate conflict-equivalent abstractions for each
supervised subsystem employing Algorithm 1. Initially, module H1 is represented
by an automaton with 80 states and 259 transitions that we will write 80(259). If a
transition is self-looped at every state, then we will not count it in the total number of
transitions. Since events 61, 64, 65, and 66 are relevant to only the current subsystem
H1, we will “hide” them, that is, we will replace their occurrence in H1 by the silent
event τ . As such, we can apply the rules from Section 4.2 to generate the abstraction
H1,a that has size 31(115). The relevant event set of C2 : 2(3) is {37, 38, 63} and is
contained in the relevant event set of H1,a and hence can be reduced no further. The
reduced size of the relevant event set of C2 as compared to H2, however, did enable
the hiding of the events 61, 64, 65, and 66. Events 51, 52, 53, and 54 are relevant to
only subsystem H3 : 9(10), leading to the abstraction H3,a : 6(7). Similarly, H4 : 6(6)

has events 81 and 82 that can be hidden, leading to H4,a : 4(4). Also, events 21 and
22 are relevant to only H5 : 12(24) allowing the abstraction H5,a : 4(6).

The next step is to pick an initial subsystem. Some considerations for how to pick
a “good” ordering of subsystems will be discussed at the end of this section, but for
now we will choose H1,a as our starting point. Following Step 4 of the procedure,
we will then choose the next subsystem to be C2 and will generate the composition
H1,a‖C2 : 53(174). The next step is to check for blocking. Since it turns out the
H1,a‖C2 is nonblocking, we skip to Step 7. At this point, event 63 is not relevant
to any of the remaining subsystems and hence can now be hidden. This leads to the
abstraction (H1,a‖C2)a : 27(79).

Since other subsystems still have not yet been addressed, we return to Step 4
and add H3,a to the composition, (H1,a‖C2)a‖H3,a : 45(120). Note, the process of
abstraction has led H3,a and the resulting composition to be nondeterministic. At
this point we again check for blocking. Since the composition is nonblocking, we
skip to Step 7. All the relevant events of the composition (H1,a‖C2)a‖H3,a are still
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relevant to the remaining subsystems, therefore, no more events can be hidden at this
point. However, the composition can still be reduced further by applying the conflict
equivalence preserving rules introduced earlier, ((H1,a‖C2)a‖H3,a)a : 42(115).

Returning to Step 4 again, H4,a is added to the composition. The result
((H1,a‖C2)a‖H3,a)a‖H4,a : 61(52) turns out to be blocking. Therefore, according to
Step 6 of the procedure, a filter must be built to resolve the conflict. The blocking
composition B1,a = ((H1,a‖C2)a‖H3,a)a‖H4,a is in essence the uncontrolled “plant”
and we can apply Algorithm 6 to construct the subautomaton of B1,a that will
serve as the filter that supervises the system and prevents the blocking. Taking the
trim of B1,a removes two blocking states, but leaves the resulting automaton not
state controllable with respect to B1,a. Applying Steps 2 through 5 of Algorithm 6
leaves a state controllable and state observable automaton, but it is again blocking.
Performing another iteration of the algorithm leaves us a nonblocking subautomaton
that is state controllable and state observable with respect to B1,a. This subautomaton
has 41 states and 120 transitions and serves as our coordinating filter law Hfilt,1.

Since a determinized version of Hfilt,1 composed with (H1,a‖C2)a‖H3,a‖H4,a

is bisimulation equivalent to Hfilt,1, we will replace the composition
(H1,a‖C2)a‖H3,a‖H4,a by Hfilt,1 as we proceed to Step 7. At this point, the
events 71, 72, 73, and 74 have become local and can thus be hidden leading to the
abstraction (Hfilt,1)a : 9(17).

Returning to Step 4 once more, the last subsystem H5,a is added to the compo-
sition, (Hfilt,1)a‖H5,a : 9(17). Since the composition is nonblocking and no further
subsystems remain, we are done. The resulting modular control achieved by the five
original modular supervisors along with the conflict-resolving law Hfilt,1 satisfies the
given specifications in a nonblocking manner and is nonempty. Table 3 summarizes
the procedure applied in this example.

It turns out that the resulting modular solution is more restrictive than the
monolithic solution in that it allows only five pieces to be operated on by the FMS at
a given time, while the monolithic solution allows six pieces to be active at once.
The loss of optimality of our approach arises in two ways due to the hiding of
events. Namely, hiding an event means that we lose the ability to disable it. Also,
the hiding of events causes us to lose information about what state the underlying
plant is in, and as such forces us to employ a more conservative control law. This
loss of optimality, however, is often worth the reduction in complexity the modular
approach provides. Specifically, a measure of the complexity of the modular solution
in the above example is that the largest automaton that had to be built had 128 states
and 420 transitions. This automaton was constructed in the process of generating
the modular supervisor H1. In the monolithic approach, the composition of all the
machines and buffers leads to an automaton with 13,248 states and 46,424 transitions.
While the size of the resulting automata does not account for the complexity of the
algorithms involved in generating the control laws and the abstractions, it does give
some indication of the benefits of this approach.

Noting that the largest automaton constructed in the modular approach was the
result of building a single modular supervisor, the overall complexity could possibly
be reduced further by employing abstraction in the construction of the modular
supervisors, in addition to using abstraction in the construction of the conflict-
resolving filters. Specifically, results for the construction of individual supervisors
from Wong and Wonham (1996), Feng and Wonham (2006) and Hill and Tilbury
(2008) could be investigated.
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Table 3 Application of Algorithm 2 to FMS example

Step Automaton Built States(Transitions) Notes

1 H1 80(259) Note G′
1‖B1 : 128(420)

H2 28(74)
H3 9(10)
H4 6(6)
H5 12(24)
H2 → C2 2(3) Supervisor reduction

2 H1 → H1,a 31(115) {61,64,65,66} hidden
H3 → H3,a 6(7) {51,52,53,54} hidden

H3,a is nondeterministic
H4 → H4,a 4(4) {81,82} hidden
H5 → H5,a 4(6) {21,22} hidden

3 H1,a chosen as the initial
subsystem

4 H1,a‖C2 53(174) C2 chosen from
neighboring subsystems

5 H1,a‖C2 is determined
to be nonblocking

6 this step is skipped
7 H1,a‖C2 → (H1,a‖C2)a 27(79) {63} hidden
4 (H1,a‖C2)a‖H3,a 45(120) H3,a chosen from

neighboring subsystems
5 (H1,a‖C2)a‖H3,a is

determined to be
nonblocking

6 This step is skipped
7 (H1,a‖C2)a‖H3,a → ((H1,a‖C2)a‖H3,a)a 42(115) No further events hidden

at this point
4 ((H1,a‖C2)a‖H3,a)a‖H4,a 61(52) H4,a chosen from

neighboring subsystems
5 ((H1,a‖C2)a‖H3,a)a‖H4,a

is determined to be
blocking

6 Hfilt,1 41(120) Employ Algorithm 6
Hfilt,1 replaces

((H1,a‖C2)a‖H3,a)a‖H4,a

7 Hfilt,1 → (Hfilt,1)a 9(17) {71,72,73,74} hidden
4 (Hfilt,1)a‖H5,a 9(17) H5,a chosen from

neighboring subsystems
5 (Hfilt,1)a‖H5,a is

determined to be
nonblocking

6 This step is skipped
7 No further subsystems

left, done

Also, an improved modular solution can often be arrived at by changing the
order in which subsystems are addressed or by changing the set of events that are
considered silent along the way. For instance, if in the above example we had chosen
not to hide the events 61, 63, and 65, the resulting modular solution would have
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allowed six pieces to be operated on by the FMS at a given time, just like the
monolithic solution. This solution would have resulted in slightly larger automata,
with the largest automaton constructed having 150 states and 352 transitions.

One drawback of this approach is that there is not a single approach to ordering
subsystems that will result in the “best” overall solution. Some ordering heuristics
that can help keep the overall complexity of the procedure down include first
choosing subsystems that are either small or that offer the possibility of larger
reduction. The work of Flordal and Malik (2006) offers a sizable survey of ordering
heuristics applied to a variety of examples. Furthermore, implementation of a
conflict-equivalent abstraction relies on an incomplete set of heuristic rules that do
not in general provide a unique result.

Some heuristics for improving the optimality of this approach include “hiding”
fewer events. In this way, reduction is traded for optimality. Furthermore, it is
possible to change the outcome by not building a filter immediately following the
detection of blocking. The idea here is that sometimes conflict is resolved by compo-
sition with other subsystems and ultimately a filter is not needed. The advantage of
waiting here is that a filter cannot disable uncontrollable events and hence sometimes
must remove states from an automaton, while interaction with other subsystems can
prevent an uncontrollable event from happening in the first place so that it does not
need to be actively disabled. The drawback of waiting to build the filter is that often
the process of abstraction hides transitions that could be used to prevent blocking or
violations of controllability. In general, ordering heuristics remain an open area for
investigation.

This approach in general is well-suited to systems that are loosely coupled, as are
other modular approaches to control. If a component specification shares relevant
events with all plant components, then the achievable reduction will likely be modest,
though in most cases it will still result in smaller automata being built than with the
monolithic solution.

8 Conclusions

This paper has proposed a new approach for resolving conflict among supervised
subsystems. Requirements are presented for conflict-resolving filter laws that guar-
antee safe nonblocking control when acting in conjunction with traditionally built
modular supervisors. A methodology for building filter laws that avoids exponential
complexity is also proposed. The coordinating filters are constructed based on
conflict-equivalent abstractions, that offer the potential for a greater reduction in
state-size than existing work on conflict resolution. Additionally, the covering-based
feedback approach employed in building the filters generates a less restrictive control
law than is achieved by existing state-feedback methodologies. A manufacturing
example is also presented showing the overall potential of this approach.

A direction for future work is to investigate different ordering heuristics. Another
important direction for this work is to develop a better understanding of how
conflict-equivalent abstractions can be generated. Specifically, it would be useful to
investigate the complexity associated with generating conflict-equivalent abstractions
based on the heuristic rules of Flordal and Malik (2006) and Flordal (2006). It could
also be interesting to explore the possibility that other rules could be developed
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for generating the abstractions. Another direction for this work is to find new ways
to construct the conflict-resolving filters. Finally, the results of this work could be
combined with other modular and hierarchical approaches to supervisory control to
achieve even greater reduction in complexity.
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