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Abstract

Hierarchical Interface-Based Supervisory Control employs interfaces that allow properties of a monolithic system to be verified
through local analysis. By avoiding the need to verify properties globally, significant computational savings can be achieved.
In this paper we provide local requirements for a multi-level architecture employing command-pair type interfaces. This multi-
level architecture allows for a greater reduction in complexity and improved reconfigurability over the two-level case that has
been previously studied since it allows the global system to be partitioned into smaller modules. This paper also provides
results for synthesizing supervisors in the multi-level architecture that are locally maximally permissive with respect to a given
specification and set of interfaces.
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1 Introduction

In recent years, a well-formed body of theory has been
developed with regard to the control of discrete-event
systems (DES). Application of this theory has been hin-
dered by the well-known state-space explosion problem.
One approach to address this problem is to introduce
interfaces between various components of a larger sys-
tem [8] [17] [19] [20]. The purpose of these interfaces is
to limit the interaction of various components in such
a way that global properties can be verified locally. By
avoiding analysis of the global system, state-space ex-
plosion can often be avoided. This architecture also pro-
vides for improved reconfigurability since a system com-
ponent can be modified without having to re-analyze
the entire global system. The increased restrictiveness of
the interfaces can result in suboptimal control. In many
cases, this reduction in computational complexity and
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improved reconfigurability in exchange for optimality
may be desirable.

Considering existing research on interface-based control,
the results provided by [8] do not address nonblocking.
In this paper we refer to nonblocking in the standard
supervisory control sense where deadlock and livelock
may be considered through the marking of the system.
The work of [17] [19] [20] addresses the properties of con-
trollability and nonblocking, but this treatment is lim-
ited to two levels of modules. Other works that exist
for reducing the complexity associated with synthesiz-
ing global nonblocking control rely on incremental con-
struction and abstraction [9] [11] [14] [23]. Still other
research employs similar approaches, but for verifica-
tion [1] [10] [21]. These works are quite useful, but they
do not strictly rely on local analysis and design; rather,
their techniques are in essence applied to incrementally
constructed abstractions of the global system. As such,
these techniques are not very reconfigurable and can still
suffer from state-space explosion. The work of [5] [6] em-
ploys interface automata for software design, but does
not explicitly address the problem of supervisory con-
trol.

This paper introduces a new set of local conditions that
guarantee global controllability and nonblocking of a
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multi-level system with command-pair interfaces. An ex-
ample multi-level interface system is pictured in Fig. 1
where each closed-loop component Hi

k interacts with its
neighboring modules through interfaces Ii

k. This gen-
eralized architecture offers significant advantage over
the two-level architecture of [17] [19] [20] since in many
instances it allows the system to be partitioned into
smaller modules, further limiting the complexity of anal-
ysis and design. This multi-level architecture, therefore,
can greatly increase the size of systems that can be ad-
dressed by an interface-based approach to control.

Another contribution of this paper is the relaxation of
the interface consistency requirements of [17] [19] [20]
which allows a system to be modeled more compactly in
some instances, though at the possible expense of addi-
tional complications. Finally, the paper builds on [18] to
develop methods for synthesizing modular supervisors in
the multi-level architecture that are locally maximally
permissive with respect to the interface-based require-
ments and a given specification and set of interfaces,
though the overall resulting control may not be globally
maximally permissive.

Fig. 1. Illustration of the multi-level architecture

The organization of the remainder of this paper is as
follows. Section 2 introduces some preliminary notation
and definitions, Section 3 presents the local requirements
for the multi-level hierarchical interface-based approach
to supervisory control, and Section 4 demonstrates that
the global properties of nonblocking and controllability
can be verified based on these local requirements. Sec-
tion 5 outlines an approach to supervisor synthesis in
the multi-level architecture. Section 6 demonstrates the
application of this architecture to a manufacturing ex-
ample, while Section 7 concludes the paper with a sum-
mary of its contributions.

2 Preliminaries

We will consider DES modeled by automata that are
represented by the five-tuple G = (Q, ΣG, δ, q0, Qm),

where Q is the set of states, ΣG ⊆ Σ is the set of events
over which G is defined and Σ is the global alphabet,
δ : Q× ΣG → Q is the partial state transition function,
q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of
marked states representing successful termination of a
process. Let Σ∗ be the set of all finite strings of elements
of Σ, including the empty string ε. The partial function
δ can be extended to δ : Q × Σ∗G → Q in the natural
way. The notation δ(q, s)! for any q ∈ Q and any s ∈ Σ∗G
denotes that δ(q, s) is defined. The notation Σ(G) ⊆ ΣG

will be employed to denote the relevant event set of the
automaton G. By relevant, it is meant all events over
which G is defined that are not self-looped at every state.

The generated and marked languages of G, denoted by
L(G) and Lm(G) respectively, are defined by L(G) =
{s ∈ Σ∗G | δ(q0, s)!} and Lm(G) = {s ∈ Σ∗G | δ(q0, s) ∈
Qm}. The notation L represents the set of all prefixes of
strings in the language L, and is referred to as the prefix-
closure of L. The following eligibility operator will be
employed to denote which events in the set Σ are enabled
in the language L following the occurrence of a string
s ∈ Σ∗, EligL(s) := {σ ∈ Σ | sσ ∈ L}. An event σ ∈ Σ
is defined to be irrelevant to the language L ⊆ Σ∗, if for
all s, t ∈ Σ∗ st ∈ L if and only if sσt ∈ L, otherwise σ is
relevant to L [1].

An automaton is said to be nonblocking when from all of
its reachable states, a marked state can be reached. From
a language point of view, this is defined as Lm(G) =
L(G). If an automaton enters a state from which it can-
not reach a marked state, the automaton is said to have
blocked.

The operation of two automata G1 and G2 together
is captured via the synchronous composition (parallel
composition) operator, ‖. When composed, events not
shared by both automata are allowed to occur without
participation of the other automaton, while those events
that are shared must occur with the two automata syn-
chronized [3].

We will employ the natural projection Pi : Σ∗ → Σ∗i .
Given a string s ∈ Σ∗, the natural projection Pi erases
those events in the string that are in the global alphabet
Σ, but not in the local alphabet Σi, where Σi ⊆ Σ.

Pi(ε) := ε Pi(e) :=

{
e, e ∈ Σi ⊆ Σ

ε, e /∈ Σi ⊆ Σ

Pi(se) := Pi(s)Pi(e), s ∈ Σ∗, e ∈ Σ

We can also define the inverse natural projection for a
string t ∈ Σ∗i as follows, P−1

i (t) := {s ∈ Σ∗ : Pi(s) =
t}. These definitions can naturally be extended to lan-
guages.
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In supervisory control [22], the event set of an automa-
ton is partitioned into controllable and uncontrollable
events, Σ = Σc∪̇Σu, where controllable events can be
disabled by a supervisory controller, while uncontrol-
lable events cannot. The notation ∪̇ represents the union
of disjoint sets. A supervisor, denoted by S, is a map-
ping that outputs a list of events to be disabled based on
the observation of events generated by a plant G. Keep-
ing in mind that uncontrollable events are not allowed
to be disabled, a supervisor S : L(G) → 2Σ can be rep-
resented by an automaton S such that the closed-loop
system behavior S/G = S‖G.

To ensure that a given automaton S with alphabet Σ
represents a supervisor S that restricts the plant G to
a subset of the behavior of S, it is necessary that the
following Σu-controllability condition be satisfied, where
Σu ⊆ Σ. The following expression can be interpreted as
providing that the languageL(S) is Σu-controllable with
respect to L(G), where the two languages are defined
over the same set of events.

(∀s ∈ L(S) ∩ L(G)), EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

Some interface-based requirements in this paper also rely
on a controllability-type condition with respect to event
sets other than Σu.

3 Modular Requirements

We will now define the notation and requirements neces-
sary for proving results with regard to a multi-level ap-
plication of hierarchical interface-based supervisory con-
trol. We specifically assume a restricted type of hierar-
chy consistent with a connected tree architecture with a
single root node. Figure 1 illustrates this situation. Our
component-wise specified system is split up into mod-
ules, each consisting of a plant Gi

k and a supervisor Si
k

constructed with respect to a local specification Ei
k re-

sulting in the closed-loop subsystem Hi
k = Gi

k‖Si
k. The

superscript i reflects the level of the hierarchy and takes
values {1, . . . , p}. The subscript k indicates the index
within a given level and takes the values {1, . . . , ni},
where this set represents all modules and interfaces on
a given level i, including modules and interfaces that
have different corresponding higher-level neighbors. For
each closed-loop subsystem Hi

k, the set of indices of the
interfaces and corresponding modules directly below it
in the connected tree architecture will be identified by
the notation J i

k. The sets J i
k for modules on the ith level

partition the set of indices {1, . . . , ni+1} into disjoint
subsets. While the open-loop components are not nec-
essarily nonblocking, the component supervisors will be
constructed such that the closed-loop modules are non-
blocking.

All interaction between modules takes place through cor-
responding interfaces Ii

k. These interfaces restrict the
behavior of the overall system in such a way that global
properties can be guaranteed by local analysis. In a
sense, these interfaces may apply additional control. Fig-
ure 2 shows a detail of the multi-level architecture. We
will refer to the global system defined in terms of these
modules and interfaces as the system Φ.

Fig. 2. Detail of the multi-level architecture

In this architecture, all events shared between a given
module Hi

k and its higher-level neighbor are classified as
either request events ρ ∈ ΣRi

k
or answer events α ∈ ΣAi

k
.

The occurrence of each of these events must then be ac-
cepted by the corresponding interface Ii

k. Conceptually,
request events are thought of as being under the control
of the higher-level module and answer events as being
under the control of the lower-level module. For the pur-
poses of this paper, we will assume the interfaces take
the form of a command-pair interface defined below in
the manner of [17].

Definition 1 A DES I = (X, ΣA∪̇ΣR, ξ, x0, Xm) is a
command-pair interface if the following are true:
A) L(I) ⊆ (ΣR.ΣA)∗
B) Lm(I) = (ΣR.ΣA)∗ ∩ L(I)

From the above definition it can be deduced that
the event set for the interface Ii

k is given by ΣIi
k

:=
ΣAi

k
∪̇ΣRi

k
. The event set of a given module Hi

k is
first defined to be equal to the union of the event
sets of the associated plant component and specifica-
tion and the event sets of the neighboring interfaces,
ΣHi

k
:= ΣGi

k
∪ΣEi

k
∪ΣIi

k
∪⋃

j∈Ji
k
ΣIi+1

j
. We then extend

the event sets of Gi
k, Ei

k, and Si
k so that they are equal

to to the event set of Hi
k, therefore, from this point on it

is assumed that ΣGi
k

= ΣEi
k

= ΣSi
k

= ΣHi
k
. We also as-

sume that the global alphabet is partitioned as shown in
(1), where the set Σi

k represents those events that are in
the event set of Hi

k, but not in the event set of any other
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modules, that is, Σi
k ∩ ΣHi′

k′
= ∅, ∀((i 6= i′) ∨ (k 6= k′)).

The following also assumes there is only a single module
on level 1, the top level.

Σ := Σ1
1∪̇


 ⋃̇

i=2,...,p


 ⋃̇

k=1,...,ni

(
Σi

k∪̇ΣAi
k
∪̇ΣRi

k

)






(1)

A consequence of (1) is that each interface is completely
disjoint from all other interfaces, that is, ΣIi

k
∩ΣIi′

k′
= ∅,

∀((i 6= i′) ∨ (k 6= k′)). Furthermore, the sets of request
ΣRi

k
and answer events ΣAi

k
are also disjoint from one

another. We further assume that the event set of each
module Hi

k is constrained to have the partitioning given
in (2).

ΣHi
k

= Σi
k∪̇ΣIi

k
∪̇

(⋃̇
j∈Ji

k

ΣIi+1
j

)
(2)

The above equation is consistent with the connected tree
architecture of our approach, that is, each module Hi

k
may share events only with modules from the (i + 1)th

level (through Ii+1
j where j ∈ J i

k) and a single module
from the (i − 1)th level (through Ii

k). We will employ
script letters to represent the languages generated by the
corresponding automata lifted to the global alphabet Σ.
This convention is employed in the following definitions.

PHi
k

: Σ∗ → Σ∗Hi
k
, PIi

k
: Σ∗ → Σ∗Ii

k

Hi
k := P−1

Hi
k

(L(Hi
k)), Hi

mk
:= P−1

Hi
k

(Lm(Hi
k))

Gi
k := P−1

Hi
k

(L(Gi
k)), Gi

mk
:= P−1

Hi
k

(Lm(Gi
k))

E i
k := P−1

Hi
k

(L(Ei
k)), E i

mk
:= P−1

Hi
k

(Lm(Ei
k))

Si
k := P−1

Hi
k

(L(Si
k)), Si

mk
:= P−1

Hi
k

(Lm(Si
k))

Ii
k := P−1

Ii
k

(L(Ii
k)), Ii

mk
:= P−1

Ii
k

(Lm(Ii
k))

The following requirements modified from [19] will be
employed to guarantee global properties through local
analysis for a given set of DES. Specifically, the proper-
ties will be checked with respect to each (i, k)th module
and those interfaces with which it shares events. Here
the (i, k)th module is defined to be the plant and super-
visor that make up Hi

k. Refer again to Fig. 2 to help vi-
sualize the structure of a single module. In the following,
the event set ΣLi

k
= ΣHi

k
− ΣIi

k
consists of those events

that are in the event set of the module Hi
k that are not

in the event set of the neighboring module on the next
higher level of the hierarchy. In the following definitions
and in (1) and (2) given above, we will let ΣI1

1
= ∅ and

I1
1 = I1

m1
= Σ∗ since there is no interface above the

root module H1
1. This provides that Points 4 and 5 of

Definition 4 do not need to be verified for level 1 since

ΣA1
1

= ΣR1
1

= ∅. Point 6 also does not need to be ver-
ified for level 1 since it does not apply to i = 1. When
there are no interfaces below a module, J i

k = ∅; there-
fore, Point 3 of Definition 4 does not need to be verified
for these modules. Furthermore, for the intersection of
a set of indexed languages over Σ∗, we use the conven-
tion that when the index set is empty, the result of the
intersection is Σ∗.

Definition 2 The multi-level interface system Φ is said
to be multi-level nonblocking if for all i ∈ {1, . . . , p}
and for all k ∈ {1, . . . , ni} corresponding to each i, the
following condition is satisfied:

Hi
mk

∩ Ii
mk

∩
⋂

j∈Ji
k

Ii+1
mj = Hi

k ∩ Ii
k ∩

⋂

j∈Ji
k

Ii+1
j

Definition 3 The multi-level interface system Φ is said
to be multi-level controllable with respect to the alphabet
partitions given by (1) and (2), if for all i ∈ {1, . . . , p}
and for all k ∈ {1, . . . , ni} corresponding to each i, the
following conditions are satisfied:

i) The event set of Gi
k and Si

k is ΣHi
k

and the event set
of Ii

k is ΣIi
k
.

ii) (∀s ∈ Gi
k∩Ii

k∩
⋂

j∈Ji
k
Ii+1

j ∩Si
k) EligGi

k
∩
⋂

j∈Ji
k

Ii+1
j

(s)∩
Σu ⊆ EligSi

k
∩Ii

k
(s)

Definition 4 The multi-level interface system Φ is said
to be multi-level weak interface consistent with respect
to the alphabet partitions given by (1) and (2), if for all
s ∈ Hi

k ∩ Ii
k ∩

⋂
j∈Ji

k
Ii+1

j , for all i ∈ {1, . . . , p} and for
all k ∈ {1, . . . , ni} corresponding to each i, the following
conditions are satisfied:

1) The event set of Hi
k is ΣHi

k
.

2) Ii
k is a command-pair interface, i > 1.

3) EligIi+1
j′

(s) ∩ ΣAi+1
j′

⊆ EligHi
k
(s), ∀j′ ∈ J i

k

4) (∀ρ ∈ ΣRi
k
) sρ ∈ Ii

k ⇒
(∃l ∈ Σ∗

Li
k

) slρ ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j

5) (∀α ∈ ΣAi
k
)(sρ ∈ Hi

k ∩ Ii
k ∩

⋂
j∈Ji

k
Ii+1

j ) ∧
(sρα ∈ Ii

k) ⇒ (∃l ∈ Σ∗
Li

k

) sρlα ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j

6) s ∈ Ii
mk

⇒
(∃l ∈ Σ∗

Li
k

) sl ∈ Hi
mk

∩ Ii
mk

∩⋂
j∈Ji

k
Ii+1

mj
, i > 1

In words, Point 3 of Definition 4 requires that each mod-
ular language Hi

k be ΣAi+1
j

-controllable with respect to
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each of its lower-level interface languages Ii+1
j . Points

4 and 5 require that request and answer events, respec-
tively, be reachable in a module by events not shared
with the corresponding higher-level module. Point 6 re-
quires that if a string is marked and accepted by an in-
terface, then it can be extended to a marked string in the
corresponding lower-level module by events that again
are not shared with the higher-level module. Point 4 of
this definition differs from the corresponding two-level
definition of [19] in that it has been relaxed from what
was originally a controllability requirement to the reach-
ability requirement prescribed in this paper. The Point
4 of [19] specifically required that each low-level module
H2

k of a two-level interface system be ΣR2
k
-controllable

with respect to its interface I2
k as shown in (3):

(∀s ∈ H2
k ∩ I2

k),EligI2
k
(s) ∩ ΣR2

k
⊆ EligH2

k
(s) (3)

The spirit of (3) is that the low-level modules have con-
trol only over those events shared with the high-level
module that are answer events. Therefore, the high-level
module knows that if it issues a request that is allowed
by an interface, the low-level module will not disable it.
This requirement is mirrored by Point 3 that specifies
that the high-level module H1 be ΣA2

k
-controllable with

respect to each of its interfaces I2
k . These requirements

are at the core of what enables conclusions to be drawn
about the global system with only local analysis. Defini-
tion 4 with a Point 4 that is a multi-level version of (3)
will be referred to as multi-level interface consistency.
All systems that are multi-level interface consistent are
also multi-level weak interface consistent. Therefore, all
of the results of this paper that are demonstrated for sys-
tems that are multi-level weak interface consistent will
also be satisfied by systems that are multi-level interface
consistent.

The relaxed Point 4 of multi-level weak interface consis-
tency still captures the intent of (3) by requiring instead
that any continuation of a string s possible in the low-
level must have a path of low-level events l that lead to
a request event ρ if that request event is allowed by the
associated interface. This requirement addresses all con-
tinuations of s by reapplying the requirement to a new
string s′ = sσ after the occurrence of subsequent events.
Therefore, even though the low-level module may not
allow a request event immediately (as dictated by the
controllability requirement of [19]), it will eventually en-
able the execution of the required request event follow-
ing the occurrence of a string of low-level events. Since
the request event is reached by local low-level events,
we know that the low-level module cannot be prevented
from reaching the request event by interaction with the
interface or high-level module. The relaxed Point 4 is
verified with complexity that is cubic in the number
of states of the involved automata, whereas the origi-

nal controllability-type requirement can be verified with
quadratic complexity.

If a given system model is multi-level weak interface
consistent, but not multi-level interface consistent, the
model of a higher-level module can be modified by re-
placing a problematic request event by a newly added
event to the system, making the original request event
local to the lower-level. The newly added event repre-
sents a communication from the higher-level, rather than
a low-level action. In this manner, the higher-level mod-
ule could issue this new request and it would be enacted
by the corresponding lower-level module immediately.
The lower-level module then would go on to carry out
some local events, including the event that had been re-
placed in the higher level, before enacting the associated
answer event [15]. The drawback of adding this new re-
quest is that additional logic must be added to enforce
the ordering between the original request and the new
request. In our experience, this logic, when composed
with the original models, may increase the size of the re-
sulting composition. On the other hand, an advantage
of adding these events is that if a modular supervisor
and the associated interface enables an event, it is then
guaranteed to be enabled for the global system immedi-
ately. With the relaxed Point 4, a request event is not
able to occur in the global system until it is enabled by
the interface and both the associated higher-level and
lower-level modular supervisors. This breaks event lo-
calization and may require communication with the two
associated levels, whereas employing additional events
as described above allows all control to be implemented
locally. Breaking event localization additionally may in-
crease the complexity associated with simulating such a
system.

4 Global Nonblocking and Controllability

In this section we will present the main results of this
paper. Specifically, we will show that if a set of local
conditions based on the definitions of Section 3 are sat-
isfied, then the global multi-level system is nonblocking
and the conjunction of modular supervisors and inter-
faces is controllable with respect to the global plant. We
first, however, present results for the special instance of
an interface system with only two levels.

4.1 Two-Level Case

Consider a two-level system consisting of a single high-
level module H1, and a series of low-level modules
H2

1, . . . ,H
2
n, and interfaces I2

1, . . . , I
2
n. The notion of

multi-level nonblocking introduced in Definition 2 re-
duces to the level-wise nonblocking definition presented
in [19] when applied to a two-level interface system.
Likewise, the property of multi-level controllability
introduced in Definition 3 reduces to the level-wise con-
trollability definition of [19] for a two-level interface
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system. In the two-level case, Definition 4 reduces to
weak interface consistency which is similar to the in-
terface consistency definition presented in [19] with the
only difference being the relaxation of Point 4. We can
now use these definitions to present the following results
that are special cases of the general multi-level theo-
rems that will follow. Specifically, Theorem 1 is a result
modified from [19] for the weak interface consistency
definition, while Theorem 2 is taken directly from [19].

Theorem 1 If the two-level interface system composed
of DES H1,H2

1, I
2
1, . . . ,H

2
n, I2

n, is level-wise nonblocking
and weak interface consistent with respect to the alpha-
bet partition given by (1), then the global system is non-
blocking:

H1
m ∩

⋂

j=1,...,n

(H2
mj
∩ I2

mj
) = H1 ∩

⋂

j=1,...,n

(H2
j ∩ I2

j )

Proof. Available in [13]. 2

Theorem 2 [19] If the two-level interface system com-
posed of plant components G1,G2

1, . . . ,G
2
n, supervisors

S1,S2
1, . . . ,S

2
n, and interfaces I2

1, . . . , I
2
n, is level-

wise controllable with respect to the alphabet par-
tition given by (1), then the supervisor language
S = S1 ∩ ⋂

j=1,...,n(S2
j ∩ I2

j ) is Σu-controllable with
respect to the plant language G = G1 ∩⋂

j=1,...,n G2
j .

4.2 General Multi-Level Case

We will now demonstrate results analogous to Theorem 1
and Theorem 2 for the general multi-level architecture.
In order to better understand the process by which these
theorems will be proved, the outline of the proofs will
be discussed first for a system where each level of the
hierarchy consists of only a single module. Controllabil-
ity and nonblocking of the multi-level architecture will
follow from the results presented for the two-level case.
Specifically, the requirements of Theorem 1 and Theo-
rem 2 must be met for a series of two-level systems con-
sisting of a high-level module Hi−1 = Si−1‖Gi−1, a low-
level module Hi‖Ii+1 = Si‖Gi‖Ii+1, and an interface Ii,
where i = {2, . . . , p}. The proofs to follow rely on this
modified formulation where the low-level plant includes
the interface from the level below, that is, the low-level
plant is considered to be Gi‖Ii+1. The disjointness of
the alphabet partitions of (1) and (2) and the connected
tree architecture will also be needed. For the interface
Ip, Hp−1 is considered the high-level module and Hp is
considered the low-level module since there is no inter-
face preceding the bottom level of the hierarchy. In the
two-level case, each interface I2

k is considered part of the
plant for level 1 and part of the supervisor for level 2.

Figure 3 illustrates the approach taken in the following
proofs. The proofs begin with the two-level system at the

top of the hierarchy, which is immediately nonblocking
and controllable by Theorems 1 and 2. We then consider
this system to be the “high-level” module and add an-
other subsystem that is considered the “low-level” mod-
ule. This process continues where the high-level module
gets larger and larger and the low-level module is just
the next subsystem considered. With this in mind, all
low-level and multi-level requirements are immediately
met. The high-level properties are shown by strong in-
duction.

Fig. 3. Illustration of approach of proofs

The proposition given below will be employed in the
proofs to follow to demonstrate controllability between
languages that are separated in the hierarchy, that is,
languages that do not share relevant events.

Proposition 1 Let K, L ⊆ Σ∗ be prefix-closed lan-
guages. If K does not have any relevant events in the set
Σu ⊆ Σ, then K is Σu-controllable with respect to L.

Proof. Available in [13]. 2

The proofs of the main results of this paper, Theorem 3
and Theorem 4, can now be presented where the strong
induction approach outlined above is employed. Recall
Fig. 1 and Fig. 2 that illustrate the general multi-level
architecture we are considering.

Theorem 3 If the multi-level interface system Φ is
multi-level nonblocking and multi-level weak interface
consistent with respect to the alphabet partitions given
by (1) and (2), then the complete system is nonblocking:

H1
m ∩H2

m ∩ I2
m ∩ . . . ∩Hp

m ∩ Ip
m =

H1 ∩H2 ∩ I2 ∩ . . . ∩Hp ∩ Ip

where

Hi
m =Hi

m1
∩ . . . ∩Hi

mni
, Ii

m = Ii
m1
∩ . . . ∩ Ii

mni
,

Hi =Hi
1 ∩ . . . ∩Hi

ni
, Ii = Ii

1 ∩ . . . ∩ Ii
ni
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Proof. Beginning at the top of the hierarchy, con-
sider a two-level system consisting of a high-level
module H1

1, a set of interfaces {I2
`}, and a corre-

sponding set of low-level modules {H2
` ||(

∣∣∣∣
k∈J2

`

I3
k)}

where ` = {1, . . . , n2}. Because the overall system
is multi-level nonblocking, we have for the first level
that H1

m1
∩⋂n2

`=1 I2
m`

= H1
1 ∩ ⋂n2

`=1 I2
` . Similarly

for each module on the second level, we have that
H2

m`
∩ I2

m`
∩⋂

k∈J2
`
I3

mk
= H2

` ∩ I2
` ∩

⋂
k∈J2

`
I3

k . These
two results provide that this two-level component is
level-wise nonblocking. Additionally, the fact that the
overall system is multi-level weak interface consistent
provides that this two-level component is weak interface
consistent. Paying particular attention to Point 1 of the
weak interface consistency definition in terms of (1), it
is necessary that the high-level module and each low-
level module only share events through their associated
interface. Since ΣH1

1
∩ (ΣH2

`
∪⋃

k∈J2
`

ΣI3
k
) = ΣI2

`
for all

` ∈ {1, . . . , n2} by (1) and (2), this condition is met.
Furthermore, it is also required that the alphabets of
each low-level module H2

` ||(
∣∣∣∣

k∈J2
`

I3
k) be disjoint from

one another. This condition is also met by (1) and (2).
Therefore, Theorem 1 can be applied to show equa-
tion (4). Within a given level, all modules are included
since it is assumed that the system has the form of a
connected tree.

H1
m ∩H2

m ∩ I2
m ∩ I3

m = H1 ∩H2 ∩ I2 ∩ I3 (4)

Now consider a system with a high-level module
H1

1‖H2
1‖ . . . ‖H2

n2
‖I2

1‖ . . . ‖I2
n2

, a set of interfaces
{I3

k}, and a corresponding set of low-level modules
{H3

k||(
∣∣∣∣

j∈J3
k

I4
j )} where k = {1, . . . , n3}. Based on the

given assumptions, all low-level and multi-level require-
ments are known to be met. In particular, Point 1 of
the weak interface consistency definition is satisfied by
the fact that (1) and (2) imply that (ΣH1

1
∪ΣH2

1
∪ . . . ∪

ΣH2
n2
∪ ΣI2

1
∪ . . . ∪ ΣI2

n2
) ∩ (ΣH3

k
∪ ⋃

j∈J3
k

ΣI4
j
) = ΣI3

k

for all k ∈ {1, . . . , n3} and each low-level module
H3

k||(
∣∣∣∣

j∈J3
k

I4
j ) is disjoint from each of the other low-level

modules. The level-wise nonblocking of the high-level
has been shown to be met by (4). The only require-
ment left is Point 3 of the weak interface consistency
definition, that is, it must be shown that the high-
level language is ΣA3

k
-controllable with respect to each

I3
k , ∀k = {1, . . . , n3}.

Consider a single interface language I3
k from this two-

level system. On level 2, there is a single module H2
` that

shares events with this interface, that is, (ΣH2
`
∩ ΣI3

k
6=

∅). The language generated by this module H2
` is ΣA3

k
-

controllable with respect to I3
k due to the multi-level

weak consistency requirement. For those modules H2
`′

from level 2 that do not share events with I3
k , they do not

possess any events that are in the set ΣA3
k

by equation
(2). Therefore by Proposition 1, each language H2

`′ for
which `′ 6= ` is also ΣA3

k
-controllable with respect to I3

k .

Furthermore, each interface from level 2, I2
` , and the

module from the level 1, H1
1, also do not share any events

with the event set ΣA3
k

by (1) and (2). Applying Propo-
sition 1 again demonstrates that each of the languages
generated by these DES are ΣA3

k
-controllable with re-

spect to the interface language I3
k .

Since the module language H1
1 and the interface and

module languages I2
` and H2

` , where ` = {1, . . . , n2},
are ΣA3

k
-controllable with respect to I3

k , so is the com-
position of these languages since each of the languages
is prefix-closed. Otherwise stated, H1

1 ∩H2
1 ∩ . . .∩H2

n2
∩

I2
1 ∩ . . .∩I2

n2
is ΣA3

k
-controllable with respect to the in-

terface language I3
k . Repeating this logic, this high-level

language can be shown to be ΣA3
k
-controllable with re-

spect to any interface language I3
k , ∀k = {1, . . . , n3}.

Therefore, we have shown that Point 3 is satisfied. Since
all level-wise nonblocking and weak interface consistency
requirements are met for this two-level system, Theo-
rem 1 then gives us:

H1
m ∩H2

m ∩ I2
m ∩H3

m ∩ I3
m ∩ I4

m =
H1 ∩H2 ∩ I2 ∩H3 ∩ I3 ∩ I4

This logic is repeated until all modules on all p levels have
been addressed. Low-level modules that do not have any
interfaces below them are slightly different in that each
module just has the form Hi

k. However, they still sat-
isfy the level-wise nonblocking and weak interface con-
sistency requirements leading to the desired result. 2

In the above proof, the “low-level” module always stands
alone, thus Point 4 of the weak interface consistency
definition is immediately satisfied (as well as all other
low-level requirements).

Theorem 4 If the multi-level interface system Φ is
multi-level controllable with respect to the alphabet par-
titions given by (1) and (2), then the supervisor language
S = S1 ∩ S2 ∩ I2 ∩ . . . ∩ Sp ∩ Ip is Σu-controllable
with respect to the plant language G = G1 ∩ . . . ∩ Gp,
where Si = Si

1 ∩ . . . ∩ Si
ni

, Ii = Ii
1 ∩ . . . ∩ Ii

ni
, and

Gi = Gi
1 ∩ . . . ∩ Gi

ni
.

Proof. Beginning at the top of the hierarchy, consider
the two-level interface system consisting of a high-level
plant G1

1 and supervisor S1
1, a set of interfaces {I2

`}, and
a corresponding set of low-level plants {G2

` ||(
∣∣∣∣

k∈J2
`

I3
k)}

and supervisors {S2
`} where ` = {1, . . . , n2}. This high-

level plant and supervisor have an alphabet of ΣH1
1
, each

7



low-level plant and supervisor have an alphabet of ΣH2
`

since ΣH2
`
⊇ ⋃

k∈J2
`

ΣI3
k

for each ` ∈ {1, . . . , n2}, and
each interface has an alphabet of ΣI2

`
. Therefore by (1)

and (2), the high-level module and each low-level mod-
ule only share events through their common interface,
that is, ΣH1

1
∩ ΣH2

`
= ΣI2

`
. Furthermore, the alphabets

of each interface is disjoint from the alphabets of the
other interfaces. Since the overall system is multi-level
controllable, we also have for the first level that S1

1 is
Σu-controllable with respect to G1

1 ∩
⋂n2

`=1 I2
` . Similarly

for the second level we have that each S2
` ∩ I2

` is Σu-
controllable with respect G2

` ∩
⋂

k∈J2
`
I3

k . These results
provide that this two-level component is level-wise con-
trollable. Therefore, Theorem 2 can be applied to show
that the language S1 ∩ S2 ∩ I2 is Σu-controllable with
respect to G1∩G2∩I3. Within a given level, all modules
are included since the system is connected.

Now consider an interface system with a high-level plant
G1

1‖G2
1‖ . . . ‖G2

n2
and supervisor

S1
1‖S2

1‖ . . . ‖S2
n2
‖I2

1‖ . . . ‖I2
n2

, a set of interfaces {I3
k}, and

a corresponding set of low-level plants {G3
k||(

∣∣∣∣
j∈J3

k

I4
j )}

and supervisors {S3
k} where k = {1, . . . , n3}. The al-

phabet of the high-level plant and supervisor is ΣH1
1
∪

ΣH2
1
∪ . . . ∪ ΣH2

n2
since each ΣH2

`
⊇ ΣI2

`
, likewise, the

alphabet of each low-level plant and supervisor is ΣH3
k
,

and the alphabet of each interface is ΣI3
k
. Therefore, by

(1) and (2) the high-level module and low-level module
only share events through their common interface, that
is, (ΣH1

1
∪ΣH2

1
∪ . . .∪ΣH2

n2
)∩ΣH3

k
= ΣI3

k
. Additionally,

the alphabet of each interface is disjoint from the alpha-
bets of the other interfaces. Since the overall system is
multi-level controllable, the low-level satisfies the level-
wise controllability definition. The high-level satisfies
the level-wise controllability definition based on the pre-
vious step of this proof. Therefore, Theorem 2 can be ap-
plied again to show that the languageS1∩S2∩I2∩S3∩I3

is Σu-controllable with respect to G1 ∩ G2 ∩ G3 ∩ I4.

This logic is repeated until all modules on all p levels have
been addressed. Lower-level modules that do not have
any interfaces below them are slightly different in that
their plant components just have the form Gi

k. However,
they still satisfy level-wise controllability leading to the
desired result. 2

5 Supervisor Synthesis

In the previous section we demonstrated that for a given
multi-level interface system the local properties of Sec-
tion 3 are sufficient for guaranteeing the global proper-
ties of nonblocking and controllability. It was not, how-
ever, specified how to construct the multi-level interface
system. In this section we will outline a systematic ap-
proach for constructing the component supervisors for a

multi-level hierarchical interface-based architecture that
is guaranteed to meet the necessary requirements by con-
struction. The approach presented here extends the work
of [18] that provides results on how to construct high
and low-level supervisors that are optimal with respect
to a given specification and set of interfaces in the two-
level case. The extension to the multi-level case specifi-
cally requires that a modular supervisor be synthesized
to meet low and high-level requirements simultaneously.

The basic approach of [18] is similar to the traditional
approach for constructing a supremal controllable and
nonblocking sublanguage [25]. This involves first the con-
struction of the language that represents the portion of
the system’s uncontrolled behavior that is allowed by
the given specification. This language is then pruned to
remove those strings that violate controllability or non-
blocking. This construction is in general performed on
the automaton generator of the language.

For the multi-level interface-based architecture of this
paper, we will construct a supervisor Si

k with respect
to a component plant Gi

k, specification Ei
k, and set of

interfaces Ii
k, {Ii+1

j } where j represents all those indices
in the set J i

k for the given module. The starting point for
the synthesis of the supervisor for the (i, k)th module will
then be the automaton Zi

k = Gi
k‖Ei

k‖Ii
k‖(

∣∣∣∣
j∈Ji

k

Ii+1
j ).

The generated and marked languages for this automaton
lifted to the global alphabet Σ are then:

Zi
k = P−1

Hi
k

(L(Zi
k)) = Gi

k ∩ E i
k ∩ Ii

k ∩
⋂

j∈Ji
k

Ii+1
j

Zi
mk

= P−1
Hi

k

(Lm(Zi
k)) = Gi

mk
∩ E i

mk
∩ Ii

mk
∩

⋂

j∈Ji
k

Ii+1
mj

(5)

The synthesis of the modular supervisor languages then
requires the removal of those strings that violate any of
the properties required of the multi-level interface-based
approach to control. Any continuations of these removed
strings are also removed in order to generate a prefix-
closed language. Some conditions of the definitions of
Section 3 will, however, not be addressed by the synthe-
sis algorithm and must be satisfied upfront. These re-
quirements are captured in the following definition where
Ψ represents a multi-level specification interface system
similar to Φ. Here Ψ differs from Φ in that it includes
modular specifications in place of modular supervisors
since the supervisors have not been synthesized yet.

Definition 5 The multi-level specification interface sys-
tem Ψ is said to be multi-level well-formed with respect
to the alphabet partitions given by (1) and (2), if for all
i ∈ {1, . . . , p} and for all k ∈ {1, . . . , ni} corresponding
to each i, the following conditions are satisfied:

1) The event set of Gi
k and Ei

k is ΣHi
k
.
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2) Ii
k is a command-pair interface, i > 1.

In the subsequent results of this section, it will be as-
sumed that the multi-level specification interface system
Ψ is multi-level well-formed with respect to the alphabet
partitions given by (1) and (2). A language satisfying
the remaining conditions of the definitions of Section 3
is then said to be (i, k)th multi-level weak interface con-
trollable (MICi

k). This specific term is defined below.
Whereas, the language Zi

k is the starting point for the
supervisor synthesis procedure for the (i, k)th module,
the language Z in the following definitions is an arbi-
trary language.

Definition 6 LetZ ⊆ Σ∗. For system Ψ, the languageZ
is (i, k)th multi-level weak interface controllable (MICi

k)
if for all s ∈ Gi

k ∩ Ii
k ∩

⋂
j∈Ji

k
Ii+1

j ∩ Z, the following
conditions are satisfied:

1) EligGi
k
∩
⋂

j∈Ji
k

Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii
k
(s)

2) EligIi+1
j′

(s) ∩ ΣAi+1
j′

⊆ EligGi
k
∩Z(s), ∀j′ ∈ J i

k

3) (∀ρ ∈ ΣRi
k
) sρ ∈ Ii

k ⇒
(∃l ∈ Σ∗

Li
k

) slρ ∈ Gi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ∩ Z

4) (∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) sρ ∈ Hi

k ∩ Ii
k ∩

⋂
j∈Ji

k
Ii+1

j ∧
sρα ∈ Ii

k ⇒ (∃l ∈ Σ∗
Li

k

) sρlα ∈ Gi
k∩Ii

k∩
⋂

j∈Ji
k
Ii+1

j ∩Z

5) s ∈ Ii
mk

⇒
(∃l ∈ Σ∗

Li
k

) sl ∈ Gi
mk

∩ Ii
mk

∩⋂
j∈Ji

k
Ii+1

mj
∩ Z, i > 1

Point 1 of the above definition corresponds to the multi-
level controllability requirement, while Points 2-5 cor-
respond to Points 3-6 of the multi-level weak interface
consistency requirement.

To formally present this approach to supervisor synthe-
sis, we now define for an arbitrary language E ⊆ Σ∗ a
class of sublanguages of E that are (i, k)th multi-level
weak interface controllable for the given multi-level spec-
ification interface system Ψ:

CMi
k
(E) := {Z ⊆ E | Z is MICi

k with respect to Ψ}

The following proposition then demonstrates that the
set CMi

k
(E) is nonempty and closed under union. This,

therefore, implies that a unique supremal element exists
for this set.

Proposition 2 Let E ⊆ Σ∗. For system Ψ, CMi
k
(E) is

nonempty and closed under arbitrary union. In particu-
lar, CMi

k
(E) contains a (unique) supremal element that

we will denote sup CMi
k
(E).

Proof. Available in [13]. 2

Now that we have established that a supervisor exists
that is maximally permissive with respect to a given
specification and set of interfaces, we would now like
to demonstrate that this language can be constructed.
With this in mind, we will define the operator ΩMi

k
and

show that its fixpoint is sup CMi
k
(Zi

mk
). The language

fixpoint operator ΩMi
k

will be defined in terms of two
intermediate operators ΩMNBi

k
and ΩMICi

k
that we will

define first. The operator ΩMNBi
k

specifically returns
those strings of a given prefix-closed language that are
marked in Zi

mk
.

Definition 7 For system Ψ, we define the nonblocking
operator ΩMNBi

k
: Σ∗ → Σ∗, for arbitrary Z ⊆ Σ∗ as

ΩMNBi
k
(Z) := Z ∩ Zi

mk
.

The next operator ΩMICi
k

removes from a given prefix-
closed language those strings that fail any of the elements
of Definition 6, (i, k)th multi-level weak interface con-
trollability. Continuations of the failed strings are also
removed to maintain prefix-closure, as indicated by the
ExtZ operator, that returns the continuations in Z of
a given set of strings. The function ExtZ : Σ∗ → Σ∗

is defined formally as follows, ExtZ(K) = {t ∈ Z|s ≤
t for some s ∈ K}.

Definition 8 For system Ψ, we define the interface con-
trollable operator ΩMICi

k
: Σ∗ → Σ∗, for arbitrary Z ⊆

Σ∗ as ΩMICi
k
(Z) := Z − ExtZ(FailMICi

k(Z)), where

FailMICi
k(Z) := {s ∈ Gi

k ∩ Ii
k ∩

⋂
j∈Ji

k
Ii+1

j ∩ Z |
¬[EligGi

k
∩
⋂

j∈Ji
k

Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii
k
(s)]

∨ [∃j ∈ J i
k | ¬(EligIi+1

j
(s) ∩ ΣAi

k
⊆ EligGi

k
∩Z(s))]

∨ ¬[(∀ρ ∈ ΣRi
k
)sρ ∈ Ii

k ⇒ (∃l ∈ Σ∗
Li

k

)

slρ ∈ Gi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ∩ Z]

∨¬[(∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
)sρ ∈ Hi

k ∩Ii
k ∩

⋂
j∈Ji

k
Ii+1

j ∧
sρα ∈ Ii

k ⇒ (∃l ∈ Σ∗
Li

k

) sρlα ∈ Gi
k∩Ii

k∩
⋂

j∈Ji
k
Ii+1

j ∩Z]

∨ ¬[s ∈ Ii
mk

⇒ (∃l ∈ Σ∗
Li

k

)

sl ∈ Gi
mk

∩ Ii
mk

∩⋂
j∈Ji

k
Ii+1

mj
∩ Z, i > 1]}

We can now define our fixpoint operator ΩMi
k
.

Definition 9 For system Ψ, we define the (i, k)th fix-
point operator, ΩMi

k
: Σ∗ → Σ∗, for arbitrary Z ⊆ Σ∗ as

ΩMi
k

:= ΩMNBi
k
(ΩMICi

k
(Z)).

The following important result demonstrates that if
ΩMi

k
(Zi

k) reaches a fixpoint, then the fixpoint is equal
to sup CMi

k
(Zi

mk
).
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Theorem 5 For system Ψ, if there exists j ∈ {0, 1, 2, . . .}
such that Ωj

Mi
k

(Zi
k) is a fixpoint, then Ωj

Mi
k

(Zi
k) =

sup CMi
k
(Zi

mk
).

Proof. Available in [13]. 2

Finally, the following demonstrates that if the result-
ing supremal element is employed as our supervisor lan-
guage, then the necessary interface-based requirements
of Section 3 are satisfied.

Corollary 1 For system Ψ, if there exists j ∈
{0, 1, 2, . . .} such that Ωj

Mi
k

(Zi
k) is a fixpoint, then system

Φ with Si
mk

= Ωj
Mi

k

(Zi
k) and Si

k = Si
mk

satisfies Points 3,
4, 5, and 6 of the multi-level weak interface consistency
definition, Point ii) of the multi-level controllability
definition, and the multi-level nonblocking definition.

Proof. Available in [13]. 2

The fixpoint operators that have been presented so far
are language-based. The specific supervisor synthesis al-
gorithms presented in [4] for the two-level case are, how-
ever, automata-based. While we will not present a spe-
cific algorithm for automata-based supervisor construc-
tion, like [4] we can show an equivalence between re-
moving strings from a language and removing states
from an automaton. The basic approach to showing the
equivalence between a language-based algorithm and an
automata-based algorithm is to show that if a string that
reaches a state q fails to meet some necessary condition,
then all strings that reach this state q will also fail to
meet the necessary condition. This way, removing a state
from an automaton only removes strings that violate the
given requirement.

A standard result from automaton theory addresses the
property of blocking, that is, if two strings reach the same
state then one string is in the prefix closure of the marked
language if and only if the other string is [2]. The fol-
lowing proposition similarly addresses the requirements
of the (i, k)th multi-level weak interface controllability
definition. In the statement of the proposition, we will
employ the automaton Hi′

k which is equal to the automa-
ton Gi

k‖Ii
k‖(

∣∣∣∣
j∈Ji

k

Ii+1
j )‖Si

k, with self-loops added for all

events in the set Σ − ΣHi
k
. Therefore, Hi′

k has an event
set of Σ and L(Hi′

k ) = Gi
k ∩Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ∩Si
k. In the

following, the language Si
k does not necessarily satisfy

the necessary interface-based requirements. More specif-
ically, Si

k may be an intermediate language that is in
the process of being pruned to ultimately generate a su-
pervisor that does satisfy the necessary interface-based
requirements.

Proposition 3 For system Φ, Let

Hi′
k = (Qi

k, Σ, δi
k, qi

0k
, Qi

mk
). It thus follows that for all

s, t ∈ L(Hi′
k ), if δi

k(qi
0k

, s) = δi
k(qi

0k
, t) then

1) EligGi
k
∩
⋂

j∈Ji
k

Ii+1
j

(s) ∩ Σu ⊆ EligSi
k
∩Ii

k
(s) ⇔

EligGi
k
∩
⋂

j∈Ji
k

Ii+1
j

(t) ∩ Σu ⊆ EligSi
k
∩Ii

k
(t)

2) EligIi+1
j

(s) ∩ ΣAi+1
j

⊆ EligHi
k
(s) ⇔

EligIi+1
j

(t) ∩ ΣAi+1
j

⊆ EligHi
k
(t), ∀j ∈ J i

k

3) (∀ρ ∈ ΣRi
k
)[

[sρ ∈ Ii
k] ⇒ [(∃l ∈ Σ∗

Li
k

)slρ ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ]
]
⇔

[
[tρ ∈ Ii

k] ⇒ [(∃l ∈ Σ∗
Li

k

)tlρ ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ]
]

4) (∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
)

[[sρ ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ∧ sρα ∈ Ii
k] ⇒

[(∃l ∈ Σ∗
Li

k

) sρlα ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ]] ⇔

[[tρ ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ∧ tρα ∈ Ii
k] ⇒

[(∃l ∈ Σ∗
Li

k

) tρlα ∈ Hi
k ∩ Ii

k ∩
⋂

j∈Ji
k
Ii+1

j ]]

5)[
[s ∈ Ii

mk
] ⇒ [(∃l ∈ Σ∗

Li
k

)sl ∈ Hi
mk

∩ Ii
mk

∩⋂
j∈Ji

k
Ii+1

mj
]
]
⇔[

[t ∈ Ii
mk

] ⇒ [(∃l ∈ Σ∗
Li

k

)tl ∈ Hi
mk

∩ Ii
mk

∩⋂
j∈Ji

k
Ii+1

mj
]
]

Proof. Available in [13]. 2

Based on the above, it becomes apparent that an appli-
cation of the language-based fixpoint operator ΩMi

k
is

equivalent to removing at least one state from the au-
tomaton Hi′

k , or results in a fixpoint. The removal of a
state consequently removes strings with continuations
from that state from the language L(Hi′

k ). This is consis-
tent with the definition of the operator ΩMi

k
. Assuming

that we have regular languages, our automata generators
have a finite number of states. Therefore, even a naive
algorithm that tests each state of an automaton one at
a time, and removes states that are not coreachable or
that are reached by strings that violate (i, k)th multi-
level weak interface controllability, will reach a fixpoint
in finite time.

6 Implementation Example and Discussion

In this section we will demonstrate an application of this
new theory to the flexible manufacturing system (FMS)
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example shown in Fig. 4 (modified from [7]). This ex-
isting example was chosen for the purposes of compar-
ison, and though the system was not designed hierar-
chically, the hierarchical structure imposed on the sys-
tem provides a means for reducing complexity and im-
proving reconfigurability. With this system parts enter
from the left via the conveyor C2. From C2 the parts
pass through buffer B2 to a handling robot R1. This
robot then passes parts, through buffer B4, to a lathe
that can generate two different types of parts. After the
lathe has finished an operation and returned a part to
the robot R1, again through buffer B4, the robot then
passes the part to either buffer B6 or buffer B7 depend-
ing on the part type. If passed to B7, the part is then
sent to a painting machine PM via conveyor C3 and
buffer B8. Once the painting operation is finished, the
part is passed back through the same sequence by which
it arrived. From buffers B6 and B7, the two different
parts are passed to the machine AM and onto another
handling robot R2 through buffer B9. The handling
robot then passes parts to a Mill for finishing via buffer
B3 before being returned to the robot. In this exam-
ple, the machines are considered the component plants
and the buffers are considered the component specifica-
tions where it is desired that the buffers not underflow or
overflow. At the end of this section, we will also discuss
the complexity of this multi-level approach, in particu-
lar, its scalability as compared to the original two-level
architecture.

Fig. 4. Flexible manufacturing system example

6.1 Flexible Manufacturing System Example

The automaton models of the machines and buffers in
our FMS example can be found in Fig. 5 and Fig. 6
respectively where states with double circles represent
marked states and states with a short arrow represent
initial states. The convention employed here is that odd
numbers represent controllable events and even numbers
correspond to uncontrollable events. A table describing
each of the events is given below.

Application of our approach depends in part on designer

Table 1
Description of FMS events

Event Description

21 part to conveyor 2

22 part from conveyor 2 to buffer 2

30 part type 2 to buffer 7

33 part from buffer 2

34 part to buffer 4

37 part type 1 from buffer 4

38 part type 1 to buffer 6

39 part type 2 from buffer 4

41 part from buffer 3 and mill begins

42 mill finishes and part to buffer 3

51 part from buffer 4 and lathe begins type 1

52 lathe finishes type 1 and part to buffer 4

53 part from buffer 4 and lathe begins type 2

54 lathe finishes type 2 and part to buffer 4

61 AM performs preparation operation

63 AM begins operation on part type 1

64 AM finishes operation and part to buffer 9

65 AM begins operation on part type 2

71 part from buffer 7 to conveyor 3 forward

72 part from conveyor 3 to buffer 8

73 part from buffer 8 to conveyor 3 backward

74 part from conveyor 3 and to buffer 7

81 part from buffer 8 and PM begins

82 PM finishes and part to buffer 8

91 part from buffer 9

92 part to buffer 3

93 part from buffer 3

94 part exits manufacturing system

understanding. Specifically, how the system components
are partitioned into modules, how request and answer
events are chosen, and how interfaces are constructed,
are all areas where designer intuition can enter in. In
this section we will present a procedure for implement-
ing a multi-level interface-based architecture where we
provide some heuristics for making some of the neces-
sary design choices. Ultimately, it may be necessary to
try multiple combinations to find a satisfactory solution.

Application of the Multi-Level Interface-Based
Approach to Supervisory Control

Step 1: Group system components into modules - The
grouping of the components of the global system into
modules has many different possibilities that in general
do not lead to a unique solution. Two requirements on

11



Fig. 5. Automaton models of plant components

Fig. 6. Automaton models of specification components

the partitioning are that it must satisfy (1) and (2). This
means, for one, all interaction between modules must
take place through interfaces, and each interface must be
completely disjoint from all other interfaces. Addition-
ally, while each module can interact with multiple mod-
ules on the level of hierarchy immediately below it, it can
only interact with a single module on the level of hierar-
chy above it. Since the hierarchy is required to have the
structure of a connected tree, it is also implied that there
can be no closed loops formed among the modules, that
is, a module cannot be simultaneously above and below
another module in the hierarchy. Despite this restric-
tion, a multi-level architecture can still be applied to sys-
tems whose components interact with one another such
that they form a closed-loop. The complexity reduction
that can be achieved for a system whose components are
tightly coupled, however, may be limited. Some guide-
lines for choosing a partitioning that will limit the result-
ing computational complexity is to keep the number of
components in a given module small, while at the same
time limiting the number of interfaces that each module
interacts with. Other heuristic guidelines for construct-
ing a multi-level interface-based hierarchy can be found
in [12].

The dotted boxes in Fig. 4 demonstrate the partition
chosen for this example. For instance, the supervisor S2

1

will be constructed for the module H2
1 with respect to

the plant G2
1 = AM and specification E2

1 = B6‖B7.
Figure 7 illustrates the hierarchy imposed upon the sys-
tem and the flow of information.

Fig. 7. Hierarchy imposed on flexible manufacturing system
example

Step 2: Determine sets of request and answer events - Ex-
amine the plant components of each module and choose
which events are to comprise the request and answer
events associated with each interface. This again is a
heuristic process that depends on designer understand-
ing of the system and may require some iteration. Note
that all events shared between any pair of modules must
be included in either the request or answer event set for
the associated interface. Additionally, it is often helpful
to think of request events as events that start a process
and answer events as events that finish a process. Ex-
amining the plant automata of a module can give some
indication of which events begin and which ones finish a
process.

For our example, the events shared between module H3
1

and module H2
1 are 30 and 38. Examining the automa-

ton model of R1 in Fig. 5, it can be seen that both of
these events represent the completion of a process since
they both end at a marked state. Therefore, we will con-
sider them answer events ΣA3

1
= {30, 38}. It can also

be seen by inspection that the events that start these
two processes correspond to events 39 and 37 respec-
tively. In this case, however, we will take some liberties
in what we consider a “process.” We will consider our
process to be the successive occurrence of two smaller
operations. In this instance, the request event is the be-
ginning of the first operation and the answer event is the
completion of the second operation. Therefore, we will
consider event 33 to be the request event corresponding
to both answers, thus ΣR3

1
= {33}. Following this gen-

eral procedure, we further arrive at the following sets of
request and answer events: ΣR3

2
= {71}, ΣA3

2
= {74},

ΣR2
1

= {61}, ΣA2
1

= {64}, ΣR2
2

= {91}, and ΣA2
2

= {94}.

Step 3: Assume a form for each of the interface automata
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- Based on the set of request and answer events from
the previous step of this procedure, along with the de-
signer’s understanding of the system, a form for the in-
terface models needs to be assumed. Based on the re-
quirements of our approach, the interfaces must satisfy
the command-pair interface format of Definition 1. Fig-
ure 8 shows the interface automata designed for this ex-
ample.

Fig. 8. Proposed interfaces for flexible manufacturing exam-
ple

Step 4: Synthesize supervisors - Supervisors can now be
synthesized by the approach of Section 5. The basic idea
is that the interface, specification, and plant component
automata associated with a given module are composed.
States of this resulting automaton are then removed if
they are reached by strings that fail any of the require-
ments of Definition 6 or if they are not coreachable.

For example, the supervisor S2
1 is synthesized for the

plant G2
1 = AM in order to satisfy requirements with

respect to the specification E2
1 = B6‖B7 and the set

of neighboring interfaces {I3
1, I

3
2, I

2
1}. Note, in the pro-

cess of building the supervisor for the module H2
1, the

neighboring modules H3
1, H

3
2, and H2

1 did not need to be
considered at all. All necessary information was passed
through the interfaces. This illustrates how global prop-
erties are met through the construction of local supervi-
sors.

Once supervisors have been constructed for each module,
the procedure is done. See Table 2 for a summary. ¦

For the purposes of comparison, the composition of all
plant and specification components in the FMS example
results in an automaton with 218,592 states and 929,904
transitions. Furthermore, the supremal controllable sub-
language for the monolithic system is generated by an
automaton with 10,980 states and 42,666 transitions. A
traditional modular solution greatly reduces the com-
plexity of generating control for this example, but results
in blocking.

In the generation of the multi-level hierarchical interface-
based control, the largest automaton that was con-
structed had 60 states and 135 transitions. This au-
tomaton was built in the process of constructing the
supervisor for module H2

1. The resulting global closed-
loop behavior is safe and nonblocking. The sizes of the

Table 2
Details of FMS example

Step Automaton # of States

Built (# of Transitions)

1 G3
1 = C2‖R1‖Lathe 24(92)

E3
1 = B2‖B4 8(22)

G3
2 = C3‖PM 6(14)

E3
2 = B8 3(4)

G2
1 = AM 3(4)

E2
1 = B6‖B7 6(14)

G2
2 = R2‖Mill 6(14)

E2
2 = B3 3(4)

G1
1 empty

E1
1 = B9 2(2)

2 ΣR3
1

= {33} ΣA3
1

= {30, 38}
ΣR3

2
= {71} ΣA3

2
= {74}

ΣR2
1

= {61} ΣA2
1

= {64}
ΣR2

2
= {91} ΣA2

2
= {94}

3 I3
1 2(3)

I3
2 2(2)

I2
1 2(2)

I2
2 2(2)

4 Z3
1 = G3

1‖E3
1‖I3

1 36(65)

S3
1 11(12)

Z3
2 = G3

2‖E3
2‖I3

2 6(6)

S3
2 6(6)

Z2
2 = G2

2‖E2
2‖I2

2 6(6)

S2
2 6(6)

Z2
1 = G2

1‖E2
1‖I2

1‖I3
1‖I3

2 60(135)

S2
1 13(19)

Z1
1 = G1

1‖E1
1‖I2

1‖I2
2 8(12)

S1
1 6(8)

automata built in this process are substantially smaller
than those required in building the monolithic super-
visor, thereby giving some indication of the advantage
of this approach. A drawback of the interface-based so-
lution is the loss of global optimality. Specifically, the
interface-based control only allows for four pieces to be
active in the factory at any given time. The monolithic
solution allows for a maximum of seven pieces to be
active at one time. The supervisor for each module,
however, is locally optimal with respect to the interface-
based conditions. One of the reasons for the loss of global
optimality is that the interfaces hide information. For
example, based on interface I3

1 it cannot be determined
whether part type 1 or part type 2 is being produced
until the operation is finished. Since the finishing events
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30 and 38 are uncontrollable, this means that module
H2

1 will not accept two parts at the same time, even if
they are parts of a different type. A modification to the
design of the interfaces, and possibly the system mod-
els themselves, could increase the permissiveness of the
resulting control. The use of the low data events of [16]
may also help.

6.2 Complexity discussion

For a two-level interface-based architecture, efficient al-
gorithms for the verification of properties [15] [24] and
the synthesis of component supervisors [4] [24] have been
developed. For each module with its interfaces, these
algorithms have complexity that is polynomial in the
number of states and events. Note that verification of
the Point 4 of the multi-level weak interface consistency
definition has complexity that is cubic in the number
of states of the involved automata while verification of
the Point 4 of the multi-level interface consistency defi-
nition is quadratic. Since the high-level module is com-
posed with all of its interfaces at once, it is in most cases
the factor limiting how large of a system can be con-
structed and verified. It has been demonstrated that an
interface-based approach is often worthwhile in terms of
complexity savings if the interfaces are at least an order
of magnitude smaller than their corresponding low-level
modules [20].

Since it is required that the low-level modules be com-
pletely disjoint from one another, if the global system
is made larger, it is often the case that the high-level
module will grow and the number of low-level modules
will increase. Therefore, the scalability of a two-level
architecture is limited since the number of states of a
synchronous composition grows exponentially with the
number of components. This is where the advantage of
a multi-level architecture becomes apparent. Figure 9 il-
lustrates by thicker solid lines a possible partitioning of
a larger version of the FMS example used in the previ-
ous section for a two-level architecture. In the example
of the previous section, the proposed two-level partition-
ing resulted in a high-level module consisting of four au-
tomata and three low-level modules. For the expanded
system of Fig. 9, the high-level module H has grown to
include thirteen automata and the number of low-level
modules Lj has increased to six. Note that this larger
example is hypothetical and its details have not actually
been developed.

For the multi-level architecture proposed in this paper,
we have not yet developed efficient algorithms for the
verification of properties and have not yet implemented
algorithms for the synthesis of component supervisors.
We believe, however, that algorithms can be imple-
mented that will have polynomial complexity in the
number of states and events of a given module and its
interfaces just like in the two-level case.

As stated earlier, the true advantage of the multi-level
architecture is its scaling properties. We have argued
that, in the two-level case, as the global system grows
the high-level module will grow and the number of low-
level modules will increase. In the multi-level case, how-
ever, it is possible to limit the size of the modules and
the number of corresponding low-level components by
increasing the number of levels in the hierarchy. There-
fore, we can in many cases put a bound on the number of
interfaces that any given module must be analyzed with
respect to at once. In terms of complexity, this means
the number of states grows approximately linearly with
the number of components in the multi-level case, while
it had grown exponentially in the two-level case. Fur-
thermore, if a processor is available for each module,
parallel computation will allow the global system to be
verified/synthesized with the speed of a single module,
where the multi-level approach has allowed the global
system to be partitioned into smaller modules. Consid-
ering the FMS example from the previous section with
the multi-level partitioning shown in Fig. 4, the most
automata in a given module was five and the maximum
number of interfaces for a given module was three. For
the larger FMS example of this section, Fig. 9 shows by
dotted lines a possible partitioning for the multi-level ar-
chitecture. For this partitioning, the most automata in
a given module is also five, while the maximum number
of interfaces for a single module has increased to four.
Here one can see the size of the individual modules Hi

j
with their interfaces has stayed roughly the same, even
though the global system has grown significantly. The
smaller modules provided by the multi-level approach
are also advantageous in that they make the system eas-
ier to understand and reconfigure. If the components
of the global system are tightly coupled, the number
of modules and levels of hierarchy may be limited. In
the worst case, the complexity will approach that of the
monolithic solution.

7 Conclusion

The main contribution of this paper is the introduction
of requirements for a multi-level interface-based archi-
tecture by which global controllability and nonblock-
ing can be verified locally. This generalized architec-
ture is an improvement over the special two-level case
of [17] [19] [20] because in many cases it enables much
larger systems to be addressed by an interface-based ap-
proach to control. Specifically, as the number of compo-
nents in a system increases, the complexity in many in-
stances will grow linearly if more levels are added to the
architecture. If the architecture is limited to two levels,
the complexity will grow exponentially. An increase in
the number of levels in the hierarchy, however, can result
in less permissive control. A secondary contribution of
this paper is the relaxation of the interface consistency
requirements that allows some systems to be modeled
more compactly, even with the two-level approach. This
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Fig. 9. Extended FMS example with two-level and multi-level
partitioning

compactness, however, may come at the cost of intro-
ducing other complications.

The final contribution of this paper is the development
of a supervisor synthesis method for the multi-level ar-
chitecture. Building on the work of [18], we show that
these supervisors are maximally permissive with respect
to a given specification and set of interfaces and can be
constructed using automata-based methods.

Some directions for future work include attempting to
further generalize the hierarchical interface-based archi-
tecture. Specifically, it could be useful if conditions were
found under which a single “low-level” module could in-
teract with more than one “high-level” module. Also, it
would be useful if an explicit algorithm could be devel-
oped for the construction of interfaces. Some preliminary
results in this direction have been presented in [12]. So
far, interfaces have been constructed based on designer
understanding of the system. A final direction for this
work would be to develop and implement the algorithms
for the verification of the requirements of the multi-level
architecture and for the synthesis of supervisors in the
multi-level case.
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