
Formal Synthesis of Supervisory Control Software for Multiple Robot Systems

J. Goryca and R. C. Hill

Abstract— This paper demonstrates the application of a
range of theoretical tools to generate real-time control software
for multiple ground robots working together cooperatively.
Specifically, existing discrete event system theory is applied
to synthesize high-level supervisory control logic that is guar-
anteed to maintain the behavior of multiple robots within
requirements defined by a set of formal specifications. The
modeling of the high-level behavior of the robots in their given
environment, as well as the formal specifications, is described
in detail. The resulting models are represented as finite-state
automata. In this work we assume that some events cannot
be controlled, though all events are assumed to be observable.
In addition to generating control logic that is guaranteed to
keep the robots safe, results are also presented for choosing
from amongst a set of allowed robot behaviors in order to
achieve behavior that is “good” in some sense. Specifically, a
modified version of Dijkstra’s algorithm is employed to choose
a path through the finite-state automaton representing the
allowed robot behaviors. This modified algorithm is able to
address multiple robots and the fact that some events cannot be
controlled (commanded). The resulting high-level robot events
are then connected to the continuous, time-driven behavior of
the robots through a series of low-level algorithms. The result
of this work is demonstrated in simulation for a simple, but
demonstrative scenario.

I. INTRODUCTION
The cooperative control of multiple robot systems is an

important research area with many practical applications
ranging from perimeter security and surveillance, to search
and rescue and firefighting [1]. The problem of cooperative
robot control is also very challenging in that it often requires
interaction with uncertain, unstructured environments, that
provided goals and conditions can change abruptly, and
that the complexity of the required control algorithms grow
quickly as the number of agents increases.

Historically, the high-level control of complex systems
has been generated in a heuristic manner based on designer
understanding and intuition, or based on exhaustive simu-
lation studies. This is true of vehicle control systems, as
well as other domains such as manufacturing and computer
system applications. The challenge here is that the process
is generally time-consuming and can be prone to error,
especially as the complexity of the systems increases.

The pressures of these challenges have spurred research
in the area of formal synthesis of discrete control logic.
The techniques that have been developed owe much to work
from the computer science community on formally verifying
the correctness of hardware and software [2]. These new
synthesis techniques, however, don’t just verify that some
given logic satisfies a set of specifications; they automatically

All authors are with the University of Detroit Mercy, Detroit, MI 48221-
3038, USA. Send correspondence to hillrc@udmercy.edu.

synthesize the logic to meet the given requirements by con-
struction. Such techniques are valuable because they generate
logic that is provably correct without need of exhaustive
testing. Furthermore, the logic can be generated quickly upon
changes in requirements or the environment.

One class of formal synthesis techniques is sometimes
referred to as reactive synthesis [3], [4], [5], [6]. Many
of these and related works specify the desired controlled
behavior using process algebras (predicate calculus logic)
such as computational tree logic (CTL) and linear temporal
logic (LTL). Such formalisms provide a limited “language”
of atomic propositions from which to specify the desired
behavior. These formalisms can express notions of safety
and liveness. It is argued that such process algebras are
advantageous since they resemble a natural language descrip-
tion of specifications. However, most computational work is
performed by converting such logic into Büchi automata.
Büchi automata are a formalism that extend finite-state
automata to accept infinite inputs, in particular, ω-regular
languages [7].

The framework that will be employed in this paper is
the supervisory control framework initiated by Ramadge and
Wonham [8]. This type of discrete event control differs from
those works mentioned so far in that it primarily relies on
finite-state automata models and is able to address events
that may not be controllable and events that may not be
observable. (Though, work does exist where this formalism
has been extended to the control of infinite behaviors [9].)
Such a framework has great promise in that it can directly
address uncontrolled events from the environment or a hu-
man user, as well events that cannot be observed either due
to a sensor failure or lack of communication. Some work
has been done to apply such discrete event techniques to the
high-level control of autonomous agents, however, most of
these cases are very simple scenarios involving one or two
agents that do not address finding the optimal sequence of
events from a set of allowed behaviors [10], [11].

In this paper we develop the models and apply the supervi-
sory control framework to a relatively simple, but illustrative
scenario involving the cooperative control of two robots.
The purpose of this work is to begin to develop the tools
and theory necessary to address more complex scenarios.
In this paper we will assume that all events are observable,
but that some events cannot be controlled. The product of
the application of this supervisory control theory will be a
finite-state automaton representing the set of all behaviors
of the two robots allowed by the given set of requirements.
A second aspect of this work is the implementation of an
algorithm to choose a sequence of events from the allowed

set of behaviors that is by some measure, “good.” In this case,
we will develop and apply a modified version of Dijkstra’s
algorithm that is able to optimize the behavior of a system
of two robots that are operating concurrently. Additionally,
our algorithm will take into account uncontrollable events.

The remainder of this paper is structured according to the
following outline: Section II introduces supervisory control
notation, Section III develops the models for our simple
example, Section IV describes the structure and genera-
tion of the real-time control software, Section V describes
the optimization algorithm developed for commanding the
robots, Section VI presents some results from simulation,
and Section VII concludes the paper.

II. NOTATION AND PRELIMINARIES

In this paper we will formally model the robots and their
specifications as discrete event systems each represented
by their own finite-state automaton G = (Q,Σ, δ, q0, Qm),
where Q is the set of states, Σ is the set of events, δ :
Q × Σ → Q is the state transition function, q0 ∈ Q is
the initial state, and Qm ⊆ Q is the set of marked states
representing the completion of a task. In general, the function
δ is a partial function on its domain, where the notation
δ(q, σ)! for any q ∈ Q and any σ ∈ Σ denotes that δ(q, σ) is
defined. In this work we will assume that the automata are
deterministic. This means that there is a single initial state
and knowledge of which events have occurred completely
determines the current state of the automaton. In other words,
the same string of events may not lead the system to multiple
different states.

The supervisory control framework employs a feedback-
type architecture where the controller S makes decisions as
to whether or not to allow the plant G to perform a given
event based on which events have so far been observed. This
paradigm is somewhat different than some other conceptions
of “control” in that the supervisory controller does not
command actions to take place, but rather, acts on top of the
system to prevent any actions which will lead to a violation
of the given set of specifications. The logic for choosing
from amongst a set of allowed events will be described in
Section V. In this paper we will represent the supervisory
controller also as an automaton.

As the individual robots (and requirements) are repre-
sented by individual automata, the synchronous operation of
the robots (and controller) will be captured employing the
synchronous composition (or parallel composition) operator
denoted ∥. With this operator, an event that is common
to multiple automata can only occur if that event is able
to occur synchronously in each of the automata that share
the given event. For example, a robot is able to perform
an event only if that event is able to be generated by the
supervisory controller automaton at the same time. If a
component automaton employs an event that is not shared
with any other automata, it may then enact the event without
participation of the other automata. A formal definition for
the synchronous composition of two automata is given below.

Definition 1: The synchronous composition of two au-
tomata G1 and G2, where G1 = (Q1,Σ1, δ1, q01, Qm1) and
G2 = (Q2,Σ2, δ2, q02, Qm2) is the automaton

G1∥G2 = (Q1 ×Q2,Σ1 ∪ Σ2, δ, (q01, q02), Qm1 ×Qm2)

where the transition function δ : (Q1 ×Q2)× (Σ1 ∪Σ2) →
(Q1×Q2) is defined for q1 ∈ Q1, q2 ∈ Q2 and σ ∈ (Σ1∪Σ2)
as:

δ((q1, q2), σ) :=
(δ1(q1, σ), δ2(q2, σ)) if δ1(q1, σ)! and δ2(q2, σ)!

(δ1(q1, σ), q2) if δ1(q1, σ)! and σ /∈ Σ2

(q1, δ2(q2, σ)) if σ /∈ Σ1 and δ2(q2, σ)!
undefined otherwise.

As mentioned above, if the plant automaton has a feasible
event at some instant of time that cannot be generated by
the supervisory controller automaton at that instant, then
that event is in effect disabled by the supervisor. Recall,
however, that in this framework some events of the system
are not controllable, that is, they cannot be disabled by the
supervisor. For example, an action from the environment,
another agent or a human user, may be uncontrollable. Such
events need to be accounted for in the synthesis of the
supervisor. Specifically, if an uncontrollable event will cause
a violation of the system specifications, then the plant must
be prevented (by disabling controllable events) from reaching
the point at which that uncontrollable event is feasible.
The supervisory control framework includes well-defined
conditions and algorithms for synthesizing an “optimal”
supervisory controller that will allow the supremal set of
behaviors for which the plant is guaranteed to not violate
a given set of formal specifications. The two classes of
requirements that are captured by the supervisory control
framework are safety and nonblocking. Safety means that the
system will not perform any actions prohibited by a given
set of specifications. In other words, the system will not
enact a sequence of events that cannot be generated by the
specification automata. Nonblocking means that the system
can always reach a marked (goal) state. The reader is referred
to other references for further details regarding the synthesis
of supervisory controllers [12].

III. SYSTEM MODELS

In this section we describe the models for a simple
example that we will employ for demonstrating our approach
to generating provably correct control software for multiple
robot systems. In this scenario we will consider that we
have two agents (robot A and robot B) that between them
must complete a total of four tasks. In this example the
tasks simply correspond to physical locations, but it could
be envisioned that the robots must do something at each
of the locations. The requirements of this scenario are that
task 1 must be performed before task 2 and by the same
robot, and task 3 must be performed before task 4 and by
the same robot. A requirement like this could be necessary

if it were required that a robot pick up an object at one
location and then deliver that object to a second location.
Another requirement is that the two robots are not allowed to
be in the same quadrant of the field at the same time. Such
a requirement might be added to prevent robot collisions,
or to minimize the risk of losing both robots to an enemy
agent. The overall scenario is depicted in Fig. 1 where the
four quadrants are numbered from five to eight.

y

x

Region 5

Region 6 Region 7

Region 8A B

1

2

3

4

Fig. 1. Illustration of simple motivating example

The automata model of the robot A is generated from
the synchronous composition of the two automata in Fig. 2.
These automata reflect the possible behaviors of robot A
under the constraints of the given environment without the
addition of any supervision.

The event set for robot A is partitioned into sets of control-
lable (ΣA,c = {a1s, a2s, a3s, a4s, a5e, a6e, a7e, a8e}) and
uncontrollable events (ΣA,uc = {a1f, a2f, a3f, a4f}). In
this scenario, robot A can control the start of each task (a1s
= robot A starts task 1) and the entry into each region (a5e =
robot A enters region 5), but it cannot control when it finishes
a task (a1f = robot A finishes task 1). For example, once a
robot has begun heading toward a task and crosses into the
region where the task is located, then the robot can no longer
be stopped. The automaton Ggeog,A in Fig. 2(a) captures the
geographical constraints on robot A. Specifically, it captures
the relative locations of the regions and the tasks, where
the completion of a task corresponds to the robot’s arrival at
the corresponding location. This automaton also captures the
initial location of robot A (region 5) where the initial state
of the automaton is marked by the short arrow. Additionally,
all states are marked (indicated by double circles) as the
goal state will be defined by the specification automata. The
automaton Gtask,A in Fig. 2(b) captures the fact that only
one task can be performed at a time. In other words, a robot
can only be headed towards one task location at a time. This
automaton indicates that the robot is initially idle and will
only move between regions as a consequence of trying to
complete a task.

5A

6A 7A

8A
a8e

a5e

a7e

a6e

a5ea6e a8ea7e

a1f

a2fa3f,a4f

(a) Model of geographical constraints
for robot A, Ggeog,A

I

1S

2S

4S

3S

a1s

a1f

a4s

a4f

a3s

a3f

a2s

a2f

a5e,a6e,

a7e,a8e

a5e,a6e,

a7e,a8e

a5e,a6e,

a7e,a8e

a5e,a6e,

a7e,a8e

(b) Model of task constraints for robot
A, Gtask,A

Fig. 2. Models of the uncontrolled behavior of robot A as constrained by
the environment

The synchronous composition of the two automata in
Fig. 2 results in the automaton GA = Ggeog,A∥Gtask,A (not
shown) which represents all possible behaviors of robot A
without supervisory control. An analogous automaton model
GB exists for robot B, except that robot B has its own event
set and begins in region 8. The composition of the automata
representing robot A and robot B in essence represents
the uncontrolled plant for this example. The composition
G = GA∥GB has 380 states and 1948 transitions. Since
the models of robot A and robot B have completely disjoint
event sets, their composition has a state space that is the full
Cartesian product of the state spaces of the two component
automata. This fact demonstrates the complexity challenge
that arises in the synthesis of formal discrete event control.
Specifically, as the number of component automata increases,
the size of the full monolithic model can grow exponentially.
Note that even though the individual robots can operate
independently, their operation will be coupled by the control

put in place to meet the specifications imposed on the system.
In addition to the formal plant models, we also need to

generate models of the specifications. The automaton Ravoid

in Fig. 3 represents the requirement that the two robots
cannot be in the same region at the same time. This model
can be generated from the composition of the two automata
representing the geographical constraints on each of the
robots (without finish events) with the “forbidden” states
deleted. In other words, the states representing both robots
in the same region [(5A, 5B), (6A, 6B), (7A, 7B), (8A, 8B)]
are deleted from the composition.

The automata in Fig. 4 capture the fact that task 1
needs to precede task 2 and be performed by the same
robot (R12), and task 3 needs to precede task 4 and be
performed by the same robot (R34). These automata also
identify the “goal” for this scenario by marking only the
states representing the completion of tasks 1 and 2 in the first
automaton, and the completion of tasks 3 and 4 in the second
automaton. The global specification can then be generated
by the composition of the three individual specification
automata, R = Ravoid∥R12∥R34. Marked states in the
resulting composition will have the form (∗, 1f.2f, 3f.4f),
representing the completion of all four tasks.

a5e

a6e

6A,5B

7A,5B

8A,5B

5A,6B

7A,6B

8A,6B

5A,7B

6A,7B

8A,7B

5A,8B

6A,8B

7A,8B

a7e

a7ea8e

a7e

a8e

a5e

a6e

a6e
a7e

a5ea6e

a8e

a8e

a5e

b6e

b5e

b6e

b5e

b5e

b7e

b6e

b7e

b6e

b8e

b7e

b8e

b7e

b5e

b8e

b8e

Fig. 3. Automaton model representing the requirement that the two robots
cannot be in the same region at the same time, Ravoid

The composition of the plant model G with the specifi-
cation model R represents the exact behavior that can be
performed by the plant and is allowed by the specification.
This automaton can represent the supervisory controller for
our system. In essence, the controller automaton runs in
parallel with the plant and updates its state as the plant
generates events. The feasible event set of the controller
automaton at any given state determines which events the
plant is allowed to perform. The issue that arises, however,

a1f

1f 1f’

1f.2f

N

b1f

a2f b2f

a3f

3f 3f’

3f.4f

N

b3f

a4f b4f

a2s b2s a4s b4s

a3s,b3sa1s,b1s

Fig. 4. Automata models representing requirements on the ordering and
completion of the four tasks, R12 and R34

is that the controller that would achieve this exact set of
behaviors would have to disable uncontrollable finish events,
which is not physically possible. Therefore, it is desirable to
find the largest set of safe behaviors that can be achieved by
disabling only controllable events (termed controllability). In
other words, the controller must disable a controllable event
such that the system doesn’t reach a state from which it
can enact an uncontrollable event that causes a violation of
the given specifications. The theory for finding a controller
which achieves the supremal controllable subbehavior is
described in [12]. For this example, the automaton repre-
senting the largest set of controllable behaviors that meets
the given specifications has 636 states and 1666 transitions.
This automaton represents the supervisor for our system.

IV. CONTROL SOFTWARE IMPLEMENTATION

The automaton representing the supervisory controller for
our example is generated off-line using the freely-available
software package UMDES/DESUMA [13], though any num-
ber of other software tools could have been employed. Fol-
lowing the creation of this automaton representation of the
controller, it is then necessary to use it to generate (with input
from a user) real-time control software to actually operate the
robots. This process entails two parts. The first part is that
a mapping between the events of the automaton and what
they mean in the real physical world must be generated. The
second part is that a “planning” algorithm must be employed
to choose which events the robots should enact. Recall, the
controller automaton represents the supremal set of behaviors
that can be controlled to satisfy the given specifications.
Since it is likely that there are multiple sequences of events
that are safe and lead the system to a marked (goal) state,
the algorithm is necessary to choose the sequence of events
that is by some measure “best.” A diagram of the software
generation process is depicted in Fig. 5.

The primary input to this process is a text file (extension
.fsm) generated from UMDES that represents the controller
automaton. A software tool has been developed that takes
this text file and, with input from a user through a graphical
user interface, is able to generate a data structure used by

Synthesizer

Planner

Coder

Safety

Policy

Security

Policy

Hardware

Description

Environment

Description

Goals

Priorities Costs

Veri ed

Libraries

set of

allowed

behaviors

structure

of control

software

Physical

World

speci c

control

action

uncontrolled

observed

events

performed

o"-line

performed

in real time

Fig. 5. Diagram representing the software generation process

the robots’ real-time control software. The graphical user
interface maps the events of the automaton to function
calls of existing software modules. Specifically, controllable
events map to function calls that command the robots to
perform actions, while uncontrollable events map to software
functions that detect the occurrence of events. For example,
the controllable start event a1s is mapped to a function call
which sends robot A to task 1 using a series of lower-
level algorithms. On the other hand, the uncontrollable finish
event a1f isn’t “commanded,” but rather is mapped to a
function that simply detects when the task location has been
reached. In this project, we specifically employ a D* Lite
algorithm [14] to generate waypoints leading from the robot’s
starting location to its destination. We also employ a VFH*
algorithm [15] to generate velocity and turn rate commands
to send the robot to the intermediate waypoints while avoid-
ing contact with obstacles within the range of the robot’s
laser. A mapping algorithm is also employed that localizes
the robot’s position on a map and provides the map as an
input variable for the D* Lite and VFH* algorithms. Each
of these algorithms have been validated and implemented on
actual vehicles as part of prior research performed in the
Advanced Mobility Laboratory at the University of Detroit
Mercy. The diagram in Fig. 6 illustrates the overall software
architecture employed in this project.

The data structure that is generated is then employed by
a high-level control algorithm for each robot. The high-level
control algorithm is written off-line and basically consists
of a while loop that tracks the current state of the system
and calls the relevant low-level functions as defined by the
data structure. The element of the software that has not been
discussed yet is how the system chooses between multiple
controllable events when there are multiple legal actions
available as defined by the supervisory controller automaton.

Supervisory

Controller

Vehicle

Vehicle

Controller

Planner

set of

controllable

events allowed

in current state

(go to location,

 pick up object,

etc.)

chosen

commanded

event

(function

call)

time-driven

commands

(voltage, etc.)

continuous

time-driven

state variables

(position, speed, etc.)

Detector

uncontrolled

event

occurrence

(threshold

crossing,

fault, etc.)

EnvironmentHuman

Operator

uncontrolled

event

commanded

event

Fig. 6. Diagram representing the real-time control software architecture

This is discussed in the next section.

V. TASK PLANNING ALGORITHM

The problem of choosing which action to take from
amongst a set of legal events basically can be thought of as a
graph search problem. We desire to find the path through the
automaton representing the supervisory controller from the
initial state to a marked state that is by some measure “best.”
In order to accomplish this, we must first assign costs to each
of the events in our automaton. A variety of methodologies
could be employed for assigning cost ranging from time
between events, to probabilities related to the likelihood of
an event occurring. In this example, we employed distances
as our costs (which correlate to time). Specifically, each
start event was assigned a cost equal to the straight-line
distance between the robot’s position at a given state and the
location of the task. This facilitates implemention because we
always know the robot’s position preceding the enactment of
a start event. This follows from the fact that every start event
occurs either from a robot’s initial position, or following
the occurrence of a finish event which indicates the robot is
positioned at the location of the task that was just finished. In
this example, all entry and finish events were assigned costs
of zero. This means that the high-level control decisions were
based on the overall ordering of the tasks (1,2,3,4), not on
the low-level paths that were actually taken to each location.

Once the costs are assigned, it is then necessary to find
the lowest cost path through the graph. For this project,
we employed a modified version of Dijkstra’s algorithm for
performing the optimization. For further details on the base
algorithm, see [16]. The issue with the standard implementa-
tion of Dijkstra’s algorithm, for the way that we have defined
the costs, is that the algorithm will find the sequence of
events that minimizes the total distance traveled (by both

robots). This could be a useful metric if we were, for exam-
ple, trying to minimize energy consumption or the exposure
of the robots. However, we actually wish to minimize the
time it takes to complete the mission. The base algorithm
doesn’t accomplish this because it doesn’t recognize that
the events are performed by two different robots that can
act in parallel. For example, the application of the standard
Dijkstra’s algorithm to the given scenario might produce a
sequence of events that commands robot A to perform all
four tasks, when in reality, the total execution time could be
reduced by commanding robot A and robot B to work in
parallel. In order to achieve this behavior, the algorithm was
modified as follows. Within the algorithm, instead of keeping
a running total of the minimum total cost it takes to reach
each state, the running cost of events associated with each of
the two robots were kept separately. Then the “optimal” path
was chosen to minimize the maximum of the two running
totals. This change accounts for the fact that the two robots
can operate at the same time.

Since so many of the costs assigned to events in our
graph are zero, there will likely be many paths through the
automaton that possess the minimum cost. For example, there
may be multiple strings of events with the same ordering
of start events, but with different interleavings of entry
and finish events. In order to address this, when presented
with a choice between performing a start event (with non-
zero cost) and waiting for an entry or finish event (with
zero cost) to occur, we always perform the start event.
Furthermore, the robot control software is structured to call
the planning algorithm to perform an optimization any time
a choice between enacting different start events needs to
occur. Performing the algorithm at these points improves
performance in that it re-optimizes the plan based on the
current robot locations, rather than the prediction made based
on straight-line distances.

VI. SIMULATION RESULTS

The Player/Stage open-source software [17] was used for
simulation of the test case. This setup consists of two pieces
of software working together. The Player part is a defined
set of interfaces and drivers that can run in combination with
Stage, or an actual robot. The Stage simulation part receives
the commands from Player and responds as the actual device
would.

The scenario described in Section III was employed for
the simulation, where Fig. 1 provides an illustration of the
scenario. The field itself is defined to have a size of 40 ×
40, where the intersection of the four regions is defined as
the origin of the rectangular coordinate system. Simulation
results will be provided for the specific task and initial robot
locations defined in Table I.

The optimization algorithm as defined in Section V chose
robot A to perform tasks 3 and 4 and robot B to perform
tasks 1 and 2. The entry events are controllable, but were
not chosen by the high-level control algorithm, rather, the
low-level D* Lite algorithm was allowed to choose the path
to each task location and the entry events events were just

TABLE I
LOCATIONS CORRESPONDING TO PROVIDED SIMULATION RESULTS

Location x-coordinate y-coordinate
robot A start -9 -19
robot B start 9 -19

task 1 -2 -5
task 2 7 8
task 3 -5 3
task 4 -13 8

allowed to happen (as if uncontrolled). The problem with
this is that the low-level D* Lite algorithm has no knowledge
(as it stands) of the high-level and may choose a path that
violates the given specifications. For this example simulation,
no specifications were violated, but in the future, the low-
level algorithms need to be modified to force each robot
to stop at a region boundary if the region to be entered
is occupied. Additionally, the low-level algorithms need to
be modified to choose paths that adhere to the region entry
events allowed by the high-level supervisory controller.

For the specific scenario described, the robot system
followed the sequence of events a3s → b1s → a6e →
b5e → a3f → a4s → b1f → b2s → b8e → a4f → b7e →
b2f . An illustration of the animation generated by the Stage
simulation environment is shown in Fig. 7.

Fig. 7. Animation for the simulation of the given scenario

VII. CONCLUSION AND FUTURE WORK

This paper describes the development of a process and
tools for synthesizing real-time control software for multiple
robot systems that is able guarantee the achievement of a set
of formal specifications by construction. The process was
then applied to a simple, but illustrative scenario involving
the cooperative control of two robots. The process and

lessons described in this paper lay the foundation for the
application of these techniques to more complex scenarios
from a range of fields. In addition to attempting other appli-
cations, other future work includes improving the optimality
of the resulting behavior and reducing the computational
complexity associated with the approach.

Further Applications: In terms of robot applications, one
natural direction is to apply this approach to a similar
scenario, just with more robots, more tasks, and a larger
field. To give an example of the kind of growth that may be
expected, the supervisory controller generated for an example
the same as the one explored in this paper, but with nine
different regions, is represented by an automaton with 5749
states and 25453 transitions. Another scenario to be explored
is one where one of the robots is classified as an “enemy”
and none of its actions can be controlled. Such a scenario
would require that the controllable robots be able to abort
a given task and be able to move to locations that aren’t
associated with completing one of the given tasks. Another
direction is to apply these techniques to examples from other
fields, like manufacturing, that involve uncontrollable events
and a need to optimize over the allowed set of behaviors.

Improving Optimality: In the application described in this
paper, the costs assigned to the various events did not
accurately reflect the actual time it takes for their enactment.
For one, the cost for start events were based on straight-
line distances to the associated task, rather than on the
actual path taken (to avoid obstacles, illegal regions, etc.).
Furthermore, start events were always enacted immediately
when available, rather than sometimes waiting for an entry
or finish event to occur first, in order to enact a different start
event. Making the costs more realistic (to make better deci-
sions) would require better coordination between the high-
level planning and low-level planning algorithms, Dijkstra’s
algorithm and D* Lite, respectively.

Reducing Computational Complexity: As mentioned pre-
viously, as the complexity of the application increases, the
computation required by the various algorithms can quickly
become prohibitive. One way to reduce the complexity is
to base optimization decisions on a reduced-order model
of the supervisor automaton. For example, in this paper,
control decisions were based solely on the starting events.
Therefore, an automaton with the entry and finish events
projected away can be generated. Such an automaton will
often have a reduced state size, though in some cases the
state size will actually be larger [12]. Another option to re-
duce computational complexity is to reuse information from
previous iterations of the high-level optimization algorithm
each time it is invoked. Such an approach is employed by
the D* algorithm and the idea has even been applied to task-
level planning in [5]. Knowledge from the low-level path
planning algorithms could also be used to reduce the number
of high-level events that need to be considered in the high-
level automata.

In the field of discrete event theory, an increasing body
of results also have been generated recently with regard
to applying abstraction [18], [19], [20], [21] and imposing

additional requirements that allow global goals to be satisfied
locally [22], [23], [24]. Such techniques can greatly reduce
the size of the controller automata that must be considered.

REFERENCES

[1] prepared by Army Capabilities Integration Center Tank-
Automotive Research and D. E. C. R. Initiative, “Robotics strategy
white paper,” March 19 2009.

[2] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
2002.

[3] M. Kloetzer and C. Belta, “Distributed implementations of global
temporal logic motion specifications,” in 2008 IEEE Int’l Conference
on Robotics and Automation (ICRA), Pasadena, USA, May 2008.

[4] M. Lahijanian, J. Wasniewski, S. B. Andersson, and C. Belta, “Motion
planning and control from temporal logic specifications with prob-
abilistic satisfaction guarantees,” in 2010 IEEE Int’l Conference on
Robotics and Automation (ICRA), Pasadena, CA, May 2008.

[5] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking
temporal logic synthesis for uncertain environments,” in 2012 IEEE
Int’l Conference on Robotics and Automation (ICRA), St. Paul, USA,
May 2012.

[6] P. Roy, P. Tabuada, and R. Majumdar, “Safety-guarantee controller
synthesis for cyber-physical systems,” CoRR, abs/1010.5665, 2010.

[7] W. Thomas, Automata on infinite objects, ser. Handbook of Theoretical
Computer Science, Vol. B: Formal Models and Semantics. Elsevier,
The MIT Press, 1990, pp. 134–191.

[8] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, January 1989.

[9] J. Thistle and W. Wonham, “Control of infinite behavior of finite
automata,” SIAM Journal of Control and Optimization, vol. 32, no. 4,
pp. 1075–1097, July 1994.

[10] E. Roszkowska, “Decentralized motion-coordination policy for coop-
erative mobile robots,” in Proc. of the 2008 Int’l Workshop on Discrete
Event Systems - WODES’08, Gothenburg, Sweden, 2008, pp. 364–369.

[11] K. T. Seow, M. T. Pham, C. Ma, and M. Yokoo, “Coordination
planning: Applying control synthesis methods for a class of distributed
agents,” IEEE Transactions on Control Systems Technology, vol. 17,
no. 2, pp. 405–415, March 2009.

[12] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems – Second Edition. Springer, 2007.

[13] UMDES and DESUMA, “Software tools for discrete event systems,”
http://www.eecs.umich.edu/umdes/toolboxes.

[14] S. Koenig and M. Likhachev, “D* Lite,” in 18th National Conference
on Artificial Intelligence, St. Paul, USA, May 2002.

[15] I. Ulrich and J. Borenstein, “VFH*: Local obstacle avoidance
with look-ahead verification,” in IEEE International Conference on
Robotics and Automation (ICRA), San Francisco, USA, 2000.

[16] N. J. Nilsson, Artificial Intelligence: A New Synthesis. Morgan
Kaufmann Publishers, Inc., 1998.

[17] Player/Stage, “Free software tools for robot and sensor applications,”
http://playerstage.sourceforge.net.

[18] H. Flordal and R. Malik, “Modular nonblocking verification using
conflict equivalence,” in Proc. of the 2006 Int’l Workshop on Discrete
Event Systems - WODES’06, Ann Arbor, USA, 2006, pp. 100–106.

[19] L. Feng and W. Wonham, “Supervisory control architecture for
discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 53, no. 6, pp. 1449–1461, 2008.

[20] R. C. Hill and D. M. Tilbury, “Incremental hierarchical construction
of modular supervisors for discrete-event systems,” Int. J. Control,
vol. 81, no. 9, pp. 1364–1381, September 2008.

[21] R. C. Hill, D. M. Tilbury, and S. Lafortune, “Modular supervisory
control with equivalence-based abstraction and state-based conflict res-
olution,” Discrete Event Dynamic Systems: Theory and Applications,
vol. 20, no. 1, pp. 491–498, 2010.

[22] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham,
“Hierarchical interface-based supervisory control–part I: Serial case,”
IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 1322–1335,
September 2005.

[23] R. J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control–part II: Parallel case,” IEEE Trans. Auto-
matic Control, vol. 50, no. 9, pp. 1336–1348, September 2005.

[24] R. C. Hill, J. E. R. Cury, M. H. Queiroz, D. M. Tilbury, and
S. Lafortune, “Multiple-level hierarchical interface-based supervisory
control,” Automatica, vol. 46, no. 7, pp. 1152–1164, 2010.

