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Abstract

Our objective is to develop a general and versatile ap-
proach for building structured formal models of complex
automated systems in order to facilitate their control and
diagnosis. For this purpose, we present a methodology
that builds the complete model of a system by compos-
ing models of the individual hardware components, their
physical coupling, and the associated control logic. We
choose to employ a hierarchical decomposition that sepa-
rates the control logic into a high level that manages the
sequence of control actions and a low level that imple-
ments the control actions. The low level is composed of
control logic and physical components (sensors and ac-
tuators) grouped into a device. In order to capture the
physical constraints between the components in a device,
we propose the notion of aphysical constraint automa-
ton, which is composed with the generic component au-
tomata to generate the complete model of the device. We
also show how the methodology allows the introduction
of component faults into the overall model. The effective-
ness of the proposed approach is demonstrated on a micro
flexible manufacturing system.

1 INTRODUCTION

Advances in industrial automation are leading to sys-
tems that are increasingly complex. Designing control
logic that provably satisfies given specifications for these
systems is a challenging task. The role of this control logic
includes correctly managing and coordinating all system
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devices to achieve the desired functionality, monitoring
the system for fault detection and isolation, and ensuring
the overall quality of the work produced. Recent work in
industrial automation has focused on the concepts of mod-
ularity and reusability of the control logic [1, 3, 17]. To
achieve all these objectives, the concepts and techniques
of discrete event system theory are beginning to receive
attention in industrial automation for control logic syn-
thesis. Specifically, techniques from supervisory control,
fault diagnosis, and fault-tolerant control of discrete event
systems [8, 10] can be employed to verify whether or not a
given specification is realizable or the faults of a given sys-
tem can be diagnosed. Existing theory can also assist in
the synthesis of the monitoring and control logic [6, 9, 12].

All of the above techniques, however, presume the
availability of a complete formal model of the system;
building such a model is a difficult task due to its de-
pendence on deep knowledge of the system components
and their physical coupling. To reduce the complexity of
modeling the overall system in a monolithic manner, re-
searchers have considered decentralized approaches and
decomposition methods [5, 15]. A fault detection and iso-
lation approach is additionally presented in [5]. Specifi-
cally, this paper presents an algorithm to construct a diag-
nostic automaton to detect non-nominal behaviors during
system operation. This automaton is constructed based
on knowledge of the system, and fault isolation is imple-
mented by a diagnostic procedure where the system is ex-
cited by system-dependent forcing commands. In [15],
a boolean discrete event model-based approach for fault
detection and isolation of manufacturing systems is pre-
sented. The work claims that the well-known problem of
state-space explosion can be avoided by considering sim-
ple system modules and approaching the diagnosis prob-
lem using a fault-free model-based approach: each behav-
ior that does not correspond to the modeled one is consid-
ered a faulty behavior.



In this paper, we address the challenges of model build-
ing by presenting a general and versatile methodology for
building in a modular manner the complete model of a
complex automated system starting from individual com-
ponents and their physical coupling. In addition, we de-
fine post-fault behavior in order to improve the precision
of fault detection and isolation. We employ finite-state
automata as our modeling formalism and propose a hi-
erarchical decomposition that separates the control logic
into a high level which manages the sequence of control
actions and a low level which implements the control ac-
tions. This hierarchical decomposition enables reuse of
the generic models of the low-level components. In [7] a
related architecture in the context of supervisory control
problems is presented. The low-level models incorporate
low-level control actions as well as fault detection logic
for component faults. This fault detection logic requires
modeling the faulty behavior of the components in addi-
tion to their fault-free behavior.

The focus of this paper is on model-building at the
lower level of the proposed hierarchy. We start from
generic fault-free models of low-level components such
as actuators and sensors. In order to capture physical con-
straints among these low-level components in a given au-
tomated system, we propose the notion of aphysical con-
straint automaton, which is then coupled with the generic
component automata by parallel composition. This ap-
proach achieves the desired characteristics of modular-
ity, composability, and reusability. We also demonstrate
how faulty behavior can be gradually incorporated into the
model by incrementally enhancing the generic component
models to include faults and by adjusting the associated
physical constraint automata in a manner that captures the
effects of these faults on the physical coupling. As a con-
sequence, the entire faulty behavior is obtained by parallel
composition of the individual faulty models. The steps of
our modeling methodology are presented using a micro
flexible manufacturing system. We then use this example
to illustrate how formal discrete event system theory can
be applied to the models to prove that the given control
specification can be achieved and the faulty behavior of
the system can be diagnosed.

This paper is organized as follows. We present in Sec-
tion II a general overview of the proposed architecture for
the control logic. We then describe in Section III the asso-
ciated modular model-building methodology for fault-free
and faulty behavior. Section IV describes how to use the
obtained models for formal verification of system prop-
erties using discrete event system theory. Section V is a
brief conclusion.

2 AN ARCHITECTURE FOR SUPERVI-
SORY CONTROL IN INDUSTRIAL AU-
TOMATION

In complex automated systems such as manufacturing
systems, it is imperative to design the supervisory con-
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Figure 1. Distribution station and testing
station of FMS

troller and hence the control logic to achieve modularity
and reusability. A crucial point in this regard is the sep-
aration of actuation mechanisms from control policies in
order to hierarchically manage the plant. In other words,
control should be viewed as the composition of: (i) a set of
basic actions; and (ii) a set of coordination policies for the
execution of these actions. This is the approach adopted
and further elaborated on in [3] and [4]. Designing the
control logic using a hierarchical strategy supports com-
ponent interoperability and reusability and facilitates di-
agnosis and reconfiguration. The proposed ideas are ap-
plied to part of a real system that will be serve as a testbed
throughout this work.

2.1 Testbed description
The testbed is part of a miniaturized flexible manu-

facturing system (FMS) produced by FESTO-DIDACTIC
(see Fig. 1); the plant produces short-stroke cylinders,
each of which are composed of a basic body, a piston,
a spring and a cap. In particular, the system starts with
raw pieces that are machined to produce bodies and then
assembles them with the other parts to obtain the finished
cylinder. In the following, the cylinders’ bodies will be
referred as workpieces. The FMS is composed of four sta-
tions; for the sake of brevity, only the first two stations are
considered. The first station, called the distribution sta-
tion, is composed of a warehouse that contains up to eight
raw workpieces. During normal operation, one workpiece
at a time is expelled from the warehouse by means of an
Extraction Cylinder and then transferred to the second sta-
tion, called the testing station, by means of a Changer
Module. A Suction Cup is used to hold the workpiece
during the transportation. Upon arrival of a workpiece in
the testing station a sensor is used to first check its color.
If the color is as required, a Lifting Module moves the
workpieces to a height tester to check if the height is also
acceptable. If the measurement outcome is positive, the
raw piece is forwarded to the next station by means of an
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Figure 2. Hierarchical architecture

Expulsion Cylinder. Otherwise, the base is lowered by
the Lifting Module and then discarded by the Expulsion
Cylinder.

2.2 Hierarchical architecture
The role of the control logic in an automated system

consists of proper management of all field devices so that
the overall system behavior fulfils some assigned target
requirements. By analyzing common classes of sensors
and actuators that equip an automated manufacturing sys-
tem, we can define general categories of low-level devices
on the basis of the number of actuation mechanisms (sin-
gle or double acting) and the number of feedback signals
(double, single, or no feedback); this characterization is
presented in [4]. Employing this classification, it is pos-
sible to categorize the devices that compose the individ-
ual stations: the Extraction Cylinder turns out to be a
single-acting/double-feedback device, the Changer Mod-
ule a double-acting/double-feedback device, the Suction
Cup a single-acting/no-feedback device, the Lifting Mod-
ule a double-acting/no-feedback device, and the Expul-
sion Cylinder a single-acting/single-feedback device. The
hierarchical architecture envisioned for the control of the
miniaturized FMS is depicted in Fig. 2. The proposed ar-
chitecture is based on the concept of structural separation
between “policies” and “actions,” and is a development
of the methodology to decompose the entire system into
a set of basic actions that together give the entire system
behavior as explained in [3] and [4]. This architecture
specifically consists of three levels:
(i) High level: This level embeds the control policy of the
system; it is devoted to the management of different op-
erational modes and to the realization of the sequences of
actions they imply. This policy is structured as sequences
of activation and deactivation commands for the lower lev-
els, but does not provide direct actuation commands.
(ii) Interface: This level translates high-level commands
into the language of the generic low-level devices.
(iii) Low level: This level contains the basic control loops
which implement the actuation mechanisms.

A related hierarchical architecture is proposed in [7],
where the focus is on the modular verification of global
properties in the context of supervisory control problems.
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Figure 3. Illustrative example: Single-acting
device

In this architecture (called Hierarchical Interface-based
Supervisory Control) a system is decomposed into one
high-level subsystem and multiple low-level subsystems
which communicate through well-defined interfaces. If
each subsystem and its interfaces satisfy certain local con-
ditions, then global properties can be guaranteed without
constructing the full system model.

Our focus in this paper is on the modeling method-
ology rather than on the efficient verification of proper-
ties. We aim for generic low-level component models that
are reusable, leaving to the high-level model application-
dependent issues regarding “what to do” and “when to do
it.” Actuation mechanisms used to implement the desired
high-level actions deal with “how to do it” issues, which
are dependent on the low-level physical constraints. In
this context, the models of the low-level components are
application-independent and thereby reusable. To ensure
reusability of the low-level components, we require that
they have a standard structure and also a standard set of
input/output commands. This is why the interface, the
middle level of the architecture, is necessary. Its role is
to map the high-level commands into low-level commands
where the low level is linked to the actual physical devices.
The low-level control logic also supports the diagnosis of
certain faults on the basis of straightforward cause-effect
relationships.

All the components of the architecture can be mod-
eled as finite-state automata (indicated by the symbolG

in Fig. 2) over given event sets (indicated by the symbol
Σ in Fig. 2). In order to ensure the desired properties of
modularity and reusability for the architecture, the follow-
ing assumptions are made:

ΣH1 ∩ ΣLn = ∅ , (1)

ΣH1 ∩ ΣIn 6= ∅ , (2)

ΣIn ∩ ΣLn 6= ∅ , (3)

ΣLi ∩ ΣLj = ∅ . (4)

Equations (1), (2) and (3) ensure the separation between
the control policy and the actuation mechanisms, while
equation (4) guarantees the modularity and reusability
of the low-level control/diagnostic logic. The model-
building methodology that we propose for the low level
is presented in the next section.
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3 Model-Building Methodology

3.1 The low level
The architecture in Fig. 2 associates several low lev-

els and their interfaces with the high level, according to
the physical devices comprising the system. In our FMS
testbed we have 6 low-level modules and associated in-
terfaces. We describe our approach to building automata
models for a single-acting device and will generalize the
procedure to other classes of devices. The desired model
is the composition of automata models of hardware com-
ponents (actuators and sensors) and models of logic com-
ponents (control logic, monitoring logic, and logic con-
straints as timers). Our objective is to embed in the low
level not only the low-level supervisory logic, but also the
diagnostic logic in order to: (i) achieve reusable software
as the low-level devices are application-independent; and
(ii) send to the high level the smallest amount of diagnos-
tic information possible. To clarify these crucial points we
start from the description of the Extraction Cylinder (sin-
gle acting/double feedback) shown in Fig. 3. This device
has two end-of-stroke sensors: sensorA signals when the
device is in the activated position and sensorD signals
when the device is in the deactivated position. Initially,
the device is deactivated, that is, the pneumatic piston is
completely retracted. The device is driven by the actua-
tion commandAC. WhenAC is observed to be high, the
device moves from left to right unless it was already in the
rightmost position (activated). Likewise, whenAC is ob-
served to be low the device moves from right to left, again
unless it was already at the leftmost position (deactivated).

The model of a generic low-level component can be
constructed by the interconnection of hardware models
and logic models as shown in Fig. 4. We start constructing
a low-level component model by first introducing nominal
models for the physical components as shown in Fig. 5.
SensorA has two steady statesA0 andA1; eventsRA0

andRA1 indicate if the sensor is read to be low or high,
respectively, while eventsAu andAd indicate that the sen-
sor output changed from low to high, or high to low, re-
spectively. The rising and falling of sensor readings (Au

andAd for example) are not observed by the controller:
only on the occurrence of polling a sensor (RA0 andRA1

A0 A1

Ad

AuRA0 RA1

(a) No fault modelGL,Anf

D0 D1

Dd

DuRD0 RD1

(b) No fault modelGL,Dnf

Act0 Act1

RAC0 ACu

ACd

RAC1

ACuACd

(c) No fault modelGL,Actnf

Figure 5. Nominal models of the sensors
and actuator
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Figure 6. Physical Constraint Automaton
(PCA) GL,PCA

for example) does the controller know if the sensor has
changed state. Furthermore, since the controller does not
directly control the rising and falling of sensor readings,
Au andAd are uncontrollable. The controller, however,
does have control over when a sensor is read. SensorD

is modeled in an analogous manner. The actuator also has
two steady statesAct0 (retracted) andAct1 (extended);
eventsRAC0 andRAC1 correspond to the movement of
the device in one direction or the other. From the point of
view of the controller these events are unobservable be-
cause the controller cannot observe the movement of the
device, it can only read sensor states. EventsACu and
ACd are the commands used by the control logic to switch
the position of the actuator and hence are observable and
controllable. The models in Fig. 5 consider the actuator
and sensors as acting alone; when they are interconnected
into the device as in Fig. 3, they interact following a set of
physical constraints based on the physical structure of the
device (a similar idea is presented in [16]). These physical
constraints can be modeled by analyzing the behavior of
the device shown in Fig. 3. When the device is in the de-
activated position sensorD and sensorA together read10.
After control commandACu the device starts to move to-
wards the activated position (eventRAC1 occurs). As the
device leaves its initial position the sensors read00 until
the device reaches the activated position where the sensors
read01. During this movement the device can be in three
different states (namelyC1, C2 andC3) reflected by the
different readings of the sensors. The opposite movement
generates statesC4, C5 andC0 in which the sensors in
the device have the same respective readings as inC3, C2

andC1. Figure 6 shows thePhysical Constraint Automa-
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Figure 7. Composition of nominal sensors,
actuator and PCA: GL,CompNom

ton (PCA) that models these constraints. Composing the
automata in Fig. 5 and Fig. 6 we obtain the automaton in
Fig. 7.

To summarize, sensorsA and D and the actuator
(calledAct for brevity) respectively have the following
observable event setsΣA,o = {RA0, RA1}, ΣD,o =

{RD0, RD1}, ΣAct,o = {ACu,ACd} and the follow-
ing unobservable event setsΣA,uo = {Au,Ad},ΣD,uo =

{Du,Dd} andΣAct,uo = {RAC0, RAC1}. Further-
more, each of the observable events are controllable and
each of the unobservable events are uncontrollable. The
automaton shown in Fig. 7 is the model of a single-
acting/double-feedback device.

The Changer Module of the FESTO system is a double-
acting/double-feedback device; to build this model we do
not need to build a completely new model. Only changes
to the PCA automaton and the actuator model are neces-
sary. This device can hold its current position in the mid-
dle of the movement, whereas a single-acting device can
only hold its position when the device is in deactivated or
activated position. Figure 8(a) shows the PCA automa-
ton where the new unobservable eventRACS models the
hold position event, while Fig. 8(b) depicts the actuator
model where the new observable eventACs models the
hold position command. With similar considerations it is
possible to build a model for any type of device, com-
posing one or two sensors, the actuator and PCA automa-
ton to model a single- or double-feedback device. For a
complete list of models, the interested reader is referred
to [14].
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Figure 9. Faulty models

3.2 Modeling faults at the low level
Generally speaking, embedding faults in device mod-

els such as the one in Fig. 7 is a difficult task if one works
with the entire automaton modeling the device. Fortu-
nately, following the modular approach of the preceding
section, modeling a fault in a physical component can be
accomplished by simply modifying the underlying physi-
cal models and the constraint model according to the lo-
cal effect of the fault. Consider for example the case
in which the activation sensorA can be stuck at its low
level; we model this fault with the unobservable event
fa0. When sensorA fails in this manner the sensor can-
not read high anymore. This fault has two consequences, a
local consequence on the sensor modeled by the automa-
ton in Fig. 9(a) getting stuck in stateAF0, and aglobal
consequence on the whole device modeled by the PCA in
Fig. 9(b). The global consequence is that the device can
move from stateC4 to stateC5 even without the occur-
rence of eventAd which represents the nominal falling
edge of the signal output from sensorA. The new unob-
servable and uncontrollable eventOutA is used to model
this situation in the sensor automaton and in the PCA. Fig-
ure 10 shows the result of the parallel composition of the
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Figure 10. Nominal and faulty model for the single-acting device, GL,Compfa0

nominal automataGL,Dnf , GL,Actnf of Fig. 5 and the
faulty automaGL,Afa0, GL,PCA A of Fig. 9. Note that
the resulting automaton contains both the nominal and
faulty behavior of the device and is, therefore, suitable to
be used in model-based diagnostics algorithms like those
employed in [13] and [2]. It is important to remark that
since the model in Fig. 10 is completely case-independent,
the monitoring code designed from it is reusable. With
further simple modifications to the automata in Fig. 5 and
Fig. 6, it is also possible to model scenarios including mul-
tiple faults; for the sake of brevity, such models are not
reported here, but the reader can find them in [14].
Remark 1 The automata models of Fig. 7 and Fig. 10 do
not include any control logic, but the nominal activation
and deactivation sequence of the device that could be im-
plemented by a controller is shown in bold. Of course, the
automata can perform other sequences depending on the
actual control logic employed, or in the case of Fig. 10,
due to the occurrence of faults.
Remark 2 The operation of the device is characterized by
three sources of information, readings from the two sen-
sors and commands to the actuator. This information indi-
cates the state of the device. The state of the device can be
changed by a new control command (eventsACu,ACd)
that forces a change in the states of the sensors (events
Au,Ad,Du,Dd) through the constraint automaton PCA.
The self-loops of the automata in Fig. 7 and Fig. 10 can
be thought of as “outputs” emitted from a given state in
much the same manner as a Moore automaton.
Remark 3 In our approach to decomposing the control
logic into two levels, we attempt to model faults in a sin-
gle low-level component where possible. This approach,
when it can be done, has the advantage that the diagnos-

Ra

Rde

D

Aa
Ade

AC

Low level 
control

A

{

Device

Fault

{

Physical Plant

Sensors Actuator

Figure 11. Single actuator device control

tic logic can be designed and implemented in the different
low-level components independently, without considera-
tion of the high-level.

4 CONTROL AND MONITORING OF
LOW-LEVEL DEVICES

4.1 Supervisory control
As explained in Section 2.2 the high-level supervisor

sends events to the low level in order to force basic ac-
tions as depicted in Fig. 11. More specifically, the event
Ra is used to request an activation of the device, while
the eventRde is employed to request a deactivation of the
device. Note that we use two request events; in this way
the policy is independent from the implementation of the
device, which is hidden in the low-level control logic. In
this manner the same control logic can be used in a single-
acting device or a double-acting device. When the device
has accomplished the high-level request it notifies the high
level using eventAa (activation accomplished) and event
Ade (deactivation accomplished). The desired behavior
for the controlled device is depicted by the automaton
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Figure 12. Desired behavior automaton
EL,ConNom for low-level control of a single-
acting device

EL,ConNom shown in Fig. 12. Referring to Fig. 12 where
the device is initially inactive, it is desired that when the
high level asks for an activation by sending the eventRa,
it causes the commandACu to be sent to the actuator by
the low level. After a given amount of time, eventRD0

then will signal that the device is not inactive anymore.
After a further amount of time, eventRA1 will indicate
that the device is activated. It is desired that this fact cause
eventAa to be sent from the low level to the high level to
acknowledge the accomplishment of the original request.
At this point, the low-level control will wait for a deactiva-
tion request (eventRde) and a similar process will be car-
ried out as with the activation request. The high-level re-
quest and answer events{Ra,Aa,Rde,Ade} are observ-
able and controllable. Composing the desired behavior in
Fig. 12 with the nominal sensors, actuator and PCA mod-
els of Fig. 5 and Fig. 6, we obtain the controlled device
modelGL,DevNom which has 18 states and 20 transitions.
Using formal discrete event theory, it can be shown that
the desired behavior of Fig. 12 is achievable by supervi-
sory controller (see [11]) since it is both controllable and
observable. Moreover, it turns out that the automaton in
Fig. 12 can be used as realization of the corresponding
supervisor.

4.2 Dealing with device faults

If we consider the models for the single-acting de-
vice with fault fa0 (see Fig. 9) composed with the
nominal controller in Fig. 12, we obtain the controlled
device modelGL,Devfa0 from the parallel composition
of modelsGL,Afa0, GL,Dnf , GL,Actnf , GL,PCA A and
EL,ConNom. The automatonGL,Devfa0 has 38 states
and 63 transitions. Since sensorA cannot rise to true,
the desired sequenceEL,ConNom is stuck in stateS3 and
it is easy to understand that this condition generates a
deadlock inGL,Devfa0. To avoid this deadlock, we con-
sider a new logical model that considers also timing con-
straints. The aim of this strategy is twofold: (i) embed
basic fault diagnosis in the low-level control logic, leav-
ing to the high level only the diagnostic task of detect-
ing complex faults that involve multiple devices; and (ii)
avoid deadlock due to faults. In order to avoid deadlock in
the controlled faulty device, we substitute the desired be-
haviorEL,ConNom shown in Fig. 12 with the supervisor

EL,ConDiag depicted in Fig. 13(b).EL,ConDiag is gen-
erated by designer understanding of the system supposing
that the time needed to activate or deactivate the device
is bounded by some known amount when the device is
operating correctly. The diagnostic logic will check the
consistency of this rule during the evolution of the device
to determine whether or not a fault has occurred. Such a
diagnostic algorithm will not require the introduction of
timed automata as the necessary timing information can
be captured by a timeout eventTO that signals the viola-
tion of the deadline. With this in mind, we consider the
timer model in Fig. 13(a). EventSC is used to start the
timer, while eventRTO is used to reset the timer. Note
that the timeout eventTO can only occur after the oc-
currence of the faultfa0 because this is supposed to be
the only case in which the temporal rule is violated. Note
that SC,RTO andTO are observable and controllable
events. The new supervisor embeds not only control like
EL,ConNom did, but also fault detection. If the device is
in the activated position waiting for a request of deacti-
vation (stateS7) and the sensorA spontaneously changes
its output to low, the faultfa0 has occurred and it is de-
tected when eventRA0 occurs taking the supervisor to
stateS13. When a fault is detected without a movement of
the system we classify this asstatic fault detection, shown
by point-dashed lines in Fig. 13(b). If the faultfa0 oc-
curs when the sensor value ofA is low, the fault can only
be detected when a movement of the device occurs which
should force the valueA to high. For this reason, when
the supervisor receives a request of activation (eventRa),
this causes not only the eventACu but also the eventSC
that starts the timer. In this case the device never reaches
the activated position because the eventRA1 never occurs
and so the control does not reset the timer (eventRTO).
The fault is then detected in stateS12 by the eventTO
that signals the violation of the time deadline. We classify
this asdynamic fault detectionindicated by dashed lines
in Fig. 13(b). Composing the new low-level supervisor
EL,ConDiag in Fig. 13(b) and the timer modelGL,Tfa0

in Fig. 13(a) with the sensorsGL,Afa0, GL,Dnf , actuator
GL,Actnf and PCA modelGL,PCA A, we obtain the con-
trolled device modelGL,Totfa0; the resulting automaton
has 57 states and 94 transitions. It is possible to formally
check the diagnosability of the controlled device using the
diagnoser theory for discrete event systems modeled by
automata [13]. The resulting analysis demonstrates that
the fault can be identified under all conditions and further
that there is no deadlock. The reader can find the details
of this analysis in [14].

5 CONCLUSION

We presented a general approach to discrete event mod-
eling of physical behavior and control logic in industrial
automation. The key features of the proposed approach
are its modularity, exploiting parallel composition to ob-
tain the complete system model from models of individ-
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Figure 13. New components for fault detection

ual components, and the reusability of the generic com-
ponent models. The reusability of component models is
made possible by the construction of a so-called “physi-
cal constraint automaton” that captures the physical cou-
pling of generic components in a given automated system.
In our general approach, we first build fault-free models
then show how to extend them to include faulty behav-
ior, preserving modularity. We also employ a hierarchical
decomposition that separates the control logic into a high
level that manages the sequence of control actions and a
low level that implements the control actions. These two
levels are coupled through an interface. Our models have
the property that sensor readings at each physical state are
represented as event self-loops; this achieves the same ob-
jectives as Moore automata, but in an entirely event-based
framework. In this context, we are able to leverage the
formal techniques from supervisory control and fault di-
agnosis for discrete event systems modeled as automata.
In particular, diagnosability analysis can be performed on
the models that include faulty behavior. One of the goals
is to ensure that component faults can be diagnosed at the
lower level of the hierarchy.
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