
Covering-Based Supervisory Control of Partially Observed Discrete Event Systems
for State Avoidance

R. C. Hill, D. M. Tilbury, and S. Lafortune

Abstract— In this work we present a new polynomial com-
plexity approach to state avoidance for nondeterministic and
partially observed discrete event systems. Our approach gen-
erates control based on a covering of the system state space
that identifies overlapping sets of indistinguishable states. This
approach is shown to be more permissive than existing state-
feedback control techniques.

I. INTRODUCTION

State-feedback control approaches base their applied con-
trol on the system’s current state, rather than on the string of
events that took the system to that state. These approaches
to control restrict the behavior of a system to a subset
of states, thereby solving a state-avoidance problem. These
types of approaches have received somewhat limited atten-
tion in the discrete event system (DES) literature recently, but
deserve renewed attention due to the reduced computational
complexity they require for nondeterministic and partially
observed systems. Nondeterministic and partially observed
systems are becoming more prevalent in the literature as
new types of abstraction are employed to reduce model
complexity [1] [2]. Also, new results with polynomial com-
plexity have recently been developed for identifying indistin-
guishable system states [3]. In this paper, we will leverage
these results to present a new covering-based approach to
state avoidance that generates a less restrictive control law
than existing state-feedback approaches to control, while still
maintaining polynomial complexity.

Most existing results on the supervisory control of non-
deterministic or partially observed DES construct event-
feedback controllers using techniques that require exponen-
tial complexity in the number of system states [4] [5] [6] [7].
The exponential complexity of these approaches negates
much of the advantage originally sought from the use of ab-
straction in the first place. An alternative approach, therefore,
is to employ techniques that construct state-feedback control
laws [8] [9]; this is not an exhaustive list and we will in
particular focus on the work producing the least restrictive
control [9], which we will improve upon. The idea with a
state-feedback law is that the control applied at a given state
must always be the same, regardless of the actual string
of events that took the system there. It is well understood
that a static feedback law like this will be more restrictive
than a dynamic one in the case of partial observation [10],

This work was supported in part by NSF grants CMS-05-28287
and EECS-0624821. All authors are with the University of Michi-
gan, Ann Arbor, MI 48109-2125, USA (rchill@umich.edu;
tilbury@umich.edu; stephane@umich.edu).

however, this sacrifice is often worth the associated reduction
in computational complexity.

The existing works [8] [9] on state-feedback control under
partial observation rely on viewing the state space of a
system through a mask that effectively partitions the state
space into disjoint sets of equivalent states. Since each state
in a given partition cannot be distinguished when observed
through the associated mask, the control applied at each of
these states must be consistent. In state-feedback control, if
two states are respectively reached by two strings with the
same observation, then they are always considered indistin-
guishable, even if other strings exist for which the states can
be distinguished. This illustrates how a state-feedback law
achieves a reduction in complexity in exchange for more
restrictive control as compared to an event-feedback law.

We propose a control law that is based on a covering of the
state space, rather than a partitioning. This covering repre-
sents overlapping sets of indistinguishable states and has the
advantage that if two states are indistinguishable from a third
state, they do not necessarily have to be indistinguishable
from one another. We go on to prove that our approach
generates a less restrictive feedback law than existing works
on state-feedback control. Another improvement provided by
our approach is that it applies to nondeterministic models.
Exponential complexity is avoided by using the recent results
of [3] for determining indistinguishable states with polyno-
mial complexity, and by implementing the covering-based
control law on-line.

The outline of the rest of this paper is as follows. Section II
introduces notation and required concepts. Section III recalls
some results from existing research on state-feedback control
where a mask is employed. Section IV then introduces
our covering-based approach to control and proves that it
generates a less restrictive control law. Section V illustrates
our approach through a simple example and Section VI
summarizes the contributions of this paper.

II. PRELIMINARIES

We will consider DES modeled by possibly nonde-
terministic automata represented by the four-tuple G =
(X, Σ, δ, x0), where X is the set of states, Σ is the set of
events, δ : X ×Σ → 2X is the state transition function, and
x0 ∈ X is the initial state. Let Σ∗ be the set of all finite
strings of elements of Σ, including the empty string ε. The
function δ is extended to δ : X × Σ∗ → 2X in the natural
way. The notation δ(x, s)! for any x ∈ X and any s ∈ Σ∗

denotes that δ(x, s) is nonempty. The notation ΣG(x) will

represent the set of active events of state x in automaton G,
that is, those events σ ∈ Σ for which δ(x, σ)!.

In supervisory control of DES, the event set is partitioned
into controllable and uncontrollable events Σ = Σc∪̇Σu

where controllable events can be disabled and uncontrollable
events cannot. A state-feedback supervisory controller is
then a function f : X → 2Σ that determines the set of
events to be enabled based on the current state of the system
under control. We will define the closed-loop system f/G
as a subautomaton of G that includes those transitions not
disabled by f [11]:

f/G = (X, Σ, δf , x0) (1)

where the function δf : X × Σ → 2X is defined

δf (x, σ) :=
{

δ(x, σ) if σ ∈ f(x) and δ(x, σ)!
∅ otherwise

Note in the above definition that f/G has the same state set
as G, though not all states are reachable in f/G.

It is our goal to find a controller that can keep the behavior
of G within a set of “good” states represented by a predicate
Q on the state space X . Specifically, Q : X → {0, 1}, where
a state x that satisfies the predicate is denoted Q(x) = 1.
Also, let Q ∈ P, where P = {0, 1}X represents the set
of all possible predicates. We also define a partial order on
predicates, where Q1 ≤ Q2 if Q1(x) ≤ Q2(x) for all x ∈ X .

Existence of a state-feedback controller f that satisfies a
predicate Q requires a controllability-type property called
Σu-invariance. We will define this property using the notion
of the weakest liberal precondition, wlpσ, of a given pred-
icate Q introduced in [11] and defined below. The weakest
liberal precondition is a predicate transformer that accepts a
state x for a given event σ if either σ is not defined at x, or
if all instances of the event σ at x lead to states which are
accepted by the predicate Q. The definition presented here
is modified to account for the fact that the automaton G is
possibly nondeterministic, that is, δ(x, σ) may have more
than one element.

Dσ(x) :=
{

1 if δ(x, σ)!
0 otherwise

wpσ(Q)(x) :=

1 if [Dσ(x) = 1] ∧
[Q(x′) = 1, ∀x′ ∈ δ(x, σ)]

0 otherwise
wlpσ(Q) := wpσ(Q) ∨ ¬Dσ

In the above, wlpσ(Q) is a predicate defined over all x ∈
X . The predicate Q is then defined to be Σu-invariant if:

Q ≤
∧

σ∈Σu

wlpσ(Q) (2)

In words, Σu-invariance means that there are no uncontrol-
lable events that lead from a state that satisfies Q to a state
that does not satisfy Q.

If the state space of G is not fully observable, then
additional considerations must be addressed. In existing work
on state-based control under partial observation, the concept
of a “mask” is employed [8] [9]. A mask M is defined

as a function M : X → Y that maps elements from the
state space X to the observation space Y . The idea is that
under partial observation two states x and x′ might not be
distinguishable, that is, M(x) = M(x′) = y. It is then
necessary that the state-feedback control f(x) be determined
based on M(x):

For any x, x′ ∈ X, M(x) = M(x′) ⇒ f(x) = f(x′) (3)

The set of state-feedback controllers which satisfy (3)
is denoted Fo. In existing state-based work it is assumed
that the mask M is given. For the purposes of comparison
with the approach of this paper, we will assume that the
mask is constructed based on the set of observable events.
We, therefore, partition Σ into observable and unobservable
events, Σ = Σo∪̇Σuo. Under the natural projection P : Σ∗ →
Σ∗o, unobservable events cannot be “seen,” that is, they map
to the empty string ε = P (σ), ∀σ ∈ Σuo. Therefore, the
mask M is constructed to satisfy the following constraint:

M : X → Y is defined such that if
∃s, s′ ∈ Σ∗ with x ∈ δ(x0, s), x′ ∈ δ(x0, s

′),
and P (s) = P (s′), then M(x) = M(x′). (4)

In the above, states x ∈ δ(x0, s) and x′ ∈ δ(x0, s
′) for

which P (s) = P (s′) are defined to be indistinguishable.
Therefore, the mask M is constructed such that all indistin-
guishable states map to the same observation.

III. STATE-BASED FEEDBACK CONTROL

In this section we present results from [9] [12] [13] that
relate to the construction of a state-feedback law f that will
satisfy a given predicate Q under partial observation such that
the requirement of (3) is satisfied. While this review of prior
results is necessary for the presentation of our new approach
to state-feedback control in Section IV, we also extend this
prior work to handle nondeterministic system models.

A. Supervisor Existence

In [12], conditions for supervisor existence under partial
observation are presented. These conditions are based in part
on sets AQ(x) ⊆ Σc that define which events must be
disabled at state x given a set of allowable states represented
by the predicate Q.

AQ(x) = {σ ∈ Σc | ∃x′ ∈ X : [M(x) = M(x′)] ∧
[Q(x′) = 1] ∧ [wlpσ(Q)(x′) = 0]} (5)

Based on the definition of AQ(x), a controllable event σ
must be disabled at state x if there exists an indistinguishable
state x′ that satisfies the given predicate Q but not the
weakest liberal precondition for σ. This logic also holds
for the case x′ = x, since a state is always considered
indistinguishable from itself, that is, M(x) = M(x).

We next define the predicate transformation R : P → P in
the manner of [12]. Let Q ∈ P be a predicate. If Q(x0) =
0, then R(Q)(x) = 0 for all x ∈ X; otherwise, R(Q) is
constructed iteratively as follows:

Algorithm 1: R(Q) Construction

Step 1: Let R(Q)(x0) = 1.
Step 2: If R(Q)(x) = 1 and wpσ(Q)(x) = 1 for some σ ∈
Σ−AQ(x), then define R(Q)(x′) = 1 for all x′ ∈ δ(x, σ).
Step 3: Repeat Step 2 iteratively until R(Q)(x) has been
set equal to 1 for all states reachable via states that satisfy
R(Q). Once all these reachable states have been addressed,
set R(Q)(x) = 0 for any remaining states. ¦

The predicate transformation R captures those states that
satisfy a given predicate and are reachable by transitions not
prohibited by the sets AQ(x). With R defined, we can now
introduce the property called M -controllability [12].

Definition 1: A predicate Q ∈ P is said to be M -
controllable if the following two conditions hold:

C1) Q is Σu-invariant.
C2) Q ≤ R(Q). ¦
The property of M -controllability can then be used for

determining existence of a state-feedback controller. Specif-
ically, if we define Re(f/G) ∈ P to be the predicate that is
true only at all reachable states of f/G, then we have the
following theorem from [12]:

Theorem 1: [12] Let Q ∈ P be a predicate with Q(x0) =
1. Then there exists a state-feedback controller f ∈ Fo such
that Re(f/G) = Q if and only if Q is M -controllable.

One possible state-feedback law is given by:

f(x) = Σ−AQ(x) (6)

It is demonstrated in [12] that the state-feedback law given
in (6) is the unique maximally permissive control law in
Fo for which Re(f/G) = Q when Q is M -controllable.
This result and Theorem 1 were originally presented for
deterministic models, but they hold for nondeterministic
models also.

B. Supervisor Construction

If a given predicate Q is not M -controllable, then [9]
and [13] prescribe some approaches for finding a subpredi-
cate of Q that can be achieved by state feedback. A difficulty
that arises is that the set of M -controllable subpredicates
does not in general possess a supremal element [13]. The
work of [13], therefore, defines a new property denoted
strong M -controllability for which a supremal subpredicate
does exist. The supremal subpredicate of Q is denoted
supSC(Q) and can be constructed by the algorithm of [13].
In [13] it is further demonstrated that supSC(Q) is larger
than the supremal controllable and normal subpredicate of Q
presented in [14] and denoted sup CN (Q). More precisely,

sup CN (Q) ≤ supSC(Q)

The property of normality is defined in Remark 4 of Sec-
tion V.

In [13] it is demonstrated that supSC(Q) is not in general
a maximal M -controllable subpredicate of Q. Conditions are
also provided for which an M -controllable subpredicate is
maximal, though construction techniques are not presented.
Maximal here is defined in terms of the partial order on
predicates introduced in Section II.

The work of [9] then presents an approach for constructing
an M -controllable subpredicate that while not necessarily
maximal, is larger than supSC(Q). Specifically, it is shown:

supSC(Q) ≤ R(Q↑)

In the above, Q↑ represents the supremal Σu-invariant sub-
predicate of Q constructed according to [11]. Therefore, the
feedback law of (6) with Q replaced by Q↑ is able to achieve
the subpredicate R(Q↑).

Taking the above results together, R(Q↑) represents the
largest subpredicate of Q for which a state-feedback law
construction algorithm exists in the literature.

IV. COVERING-BASED FEEDBACK CONTROL

In this section, we propose a new covering-based approach
to control that will be shown to be more permissive than
those state-based approaches that currently exist in the liter-
ature. This advantage will specifically derive from the fact
that the requirement of (3) is stronger than necessary. This
follows from the character of the mask M . The fact that M
is a function implies that when the state space is observed
through this mask it is effectively partitioned into disjoint
sets of states that have the same observation. For example,
if x and x′ have the same observation M(x) = M(x′), and
x′ and x′′ have the same observation M(x′) = M(x′′), it
then follows that x and x′′ must have the same observation
M(x) = M(x′′). Therefore, all three states x, x′, and x′′

must be in the same partition of the state space. It may not be
necessary, however, that the same control action be applied
at x and x′′ if they are not indistinguishable. In other words,
if the observed string that reaches both x and x′ is different
than the observed string that reaches both x′ and x′′, then the
control applied at x and x′′ may be allowed to be different.
Figure 1 illustrates this situation where σ is disabled at x′′,
but need not be disabled at x since these states are not both
reached by the same observed string. In essence, we would
like to base our control law on a covering of the state space
rather than a partition. If the event σ was possible at state
x′, then σ would need to be disabled at all three states for
our covering-based approach as well.

 0

 u

 x

 x

 x

 x

,

 ,, v

 u,v

 s

 s

Fig. 1. Example of a covering for indistinguishable states

In order to present our covering-based approach, we will
employ the mapping IQ defined as follows:

Definition 2: Let IQ : X → 2X be a mapping defined
∀x, x′ ∈ X with Q(x) = Q(x′) = 1 as follows: x′ ∈ IQ(x)
if x and x′ are indistinguishable, that is, if ∃s, s′ ∈ Σ∗ such

that x ∈ δ(x0, s), x′ ∈ δ(x0, s
′), and P (s) = P (s′) where

P : Σ∗ → Σ∗o. ¦
In the above, it is always the case that a state x is considered
indistinguishable from itself, that is, x ∈ IQ(x).

We can then define new sets of prohibited events,
A′Q(x) ⊆ Σc. At a state x accepted by Q, a controllable
transition σ that is defined in the uncontrolled plant G is
prohibited if it leads to a state that is not accepted by Q or
if it is prohibited at a state x′ for which x′ ∈ IQ(x).

Since the definition of prohibited events for a state x,
A′Q(x), depends on the prohibited events of other states, each
set A′Q(x) is constructed iteratively. In words, if there is a
string of indistinguishable states defined:

x ∈ IQ(x′), x′ ∈ IQ(x′′), . . . , x(m−1) ∈ IQ(x(m))

each with σ possible and such that σ at x(m) leads to a
state not accepted by Q, then σ is again added to A′Q(x).
This construction indicates a transitivity similar to that
imposed by M , except that here the transitivity is limited to
indistinguishable states where σ is possible. Assuming the
mapping IQ is given, A′Q(x) can be constructed as prescribed
in Algorithm 2. The mapping IQ can be constructed with
polynomial complexity using results from [3].

Algorithm 2: Prohibited Events Determination
Input: automaton G, predicate Q and mapping IQ

For each x ∈ X
For each transition σ ∈ ΣG(x) ∩ Σc

If [(Q ∧ ¬wlpσ(Q))(x) = 1] then
add σ to the set of prohibited events at x,
A′Q(x) ← {σ} ∪A′Q(x).

End if
If σ ∈ A′Q(x) then

define a set of states T that is initialized with
state x, T ← {x}. Also let M : X → {0, 1} be
a partial function marking whether or not states
in set T have been addressed yet. Set M(x) = 0.
For each x′ ∈ T with M(x′) = 0

For each x′′ ∈ IQ(x′) that is not in T
If δ(x′′, σ)! then

add state x′′ to set T , T ← {x′′} ∪ T ,
and add event σ to the set of prohibited
events at x′′, A′Q(x′′) ← {σ} ∪A′Q(x′′).
Set M(x′′) = 0.

End if
End for
Set M(x′) = 1.

End for
Clear T and M.

End if
End for

End for
Output: the sets A′Q(x) ¦

Algorithm 2 has complexity O(mn2) where m is the
cardinality of the event set Σ and n is the cardinality of
the state space X . Assuming the automaton G has a finite
number of transitions, this algorithm will terminate in finite

time. The sets A′Q(x) defined by Algorithm 2 satisfy the
following equation by construction:

A′Q(x) = {σ ∈ Σc | δ(x, σ)! ∧ (∃x′ ∈ X) : [x′ ∈ IQ(x)]
∧{[wlpσ(Q)(x′) = 0] ∨ [σ ∈ A′Q(x′)]}} (7)

In order to explicitly compare the sets AQ(x) and A′Q(x),
we now define the following mapping JQ that reflects the
partition implicitly imposed on the state set X by a mask M
satisfying (4):

Definition 3: Let JQ : X → 2X be a mapping defined
∀x, x′ ∈ X with Q(x) = Q(x′) = 1 as follows: x′ ∈ JQ(x)
if M(x) = M(x′). ¦

The definition of AQ(x) given in (5) can then be rewritten
in terms of the mapping JQ as follows:

AQ(x) = {σ ∈ Σc |(∃x′ ∈ X) : [x′ ∈ JQ(x)] ∧
[Q(x′) = 1] ∧ [wlpσ(Q)(x′) = 0]} (8)

Examining (7) and (8), σ can be an element of AQ(x)
when δ(x, σ) is empty, while it cannot be an element of
A′Q(x). Furthermore, since the mapping JQ imparts a parti-
tion on the state space X , AQ(x) = AQ(x′) if x′ ∈ JQ(x).
These observations along with the fact that IQ(x) ⊆ JQ(x)
then implies that A′Q(x) ⊆ AQ(x).

The new A′Q(x) can then be employed to generate a new
predicate transformation R′. Let Q ∈ P be a predicate. If
Q(x0) = 0, then R′(Q)(x) = 0 for all x ∈ X; otherwise
R′(Q) is constructed iteratively in the same manner as R in
Algorithm 1.

Algorithm 3: R′(Q) Construction
Step 1: Let R′(Q)(x0) = 1.
Step 2: If R′(Q)(x) = 1 and wpσ(Q)(x) = 1 for some σ ∈
Σ−A′Q(x), then define R′(Q)(x′) = 1 for all x′ ∈ δ(x, σ).
Step 3: Repeat Step 2 iteratively until R′(Q)(x) has been
set equal to 1 for all states reachable via states that satisfy
R′(Q). Once all these reachable states have been addressed,
set R′(Q)(x) = 0 for any remaining states. ¦

From the above algorithm we can see that all states that
satisfy R′(Q) can be reached from x0 by going through
states that satisfy Q without the occurrence of any prohibited
transitions, that is, for any x ∈ X−{x0} with R′(Q)(x) = 1,
there exist x1, x2, . . . , xm ∈ X and σ0, σ1, . . . , σm−1 ∈ Σ
satisfying the following conditions:

C3) xi+1 ∈ δ(xi, σi) for i = 0, 1, . . . ,m− 1.
C4) Q(xi) = 1 for i = 0, 1, . . . ,m.
C5) σi ∈ Σ−A′Q(xi) for i = 0, 1, . . . , m− 1.
C6) xm = x.
The following result that employs the logic of Lemma 1

in [13] can now be presented.
Theorem 2: For any predicate Q ∈ P

R(Q) ≤ R′(Q) (9)
Proof: If Q(x0) = 0, then R(Q)(x) = R′(Q)(x) = 0

for all x ∈ X . Consider the case that Q(x0) = 1. Since
A′Q(x) ⊆ AQ(x) for any x ∈ X , we have R(Q) ≤ R′(Q).

Although the subpredicate R(Q↑) represents a larger
achievable state set than can be achieved by any prior state-
feedback work, Theorem 2 demonstrates that we can generate
a potentially larger subpredicate R′(Q↑) ≥ R(Q↑). This
together with the example of Section V shows that our
covering-based approach is less restrictive than existing state-
feedback approaches.

The only thing left to do is to define a covering-based
control law that will achieve the subpredicate R′(Q↑). We
first propose the following state-feedback control law f ′ that
we will employ in the construction of our covering-based
law.

f ′(x) = Σ−A′Q↑(x) (10)

For this control law, the closed-loop automaton f ′/G =
(X, Σ, δf ′ , x0) is defined in the same manner as (1). The
notation Re(f ′/G) ∈ P again represents the predicate
that is true only at all reachable states of f ′/G. For any
x ∈ X − {x0} with Re(f ′/G)(x) = 1, there exist
x1, x2, . . . , xm ∈ X and σ0, σ1, . . . , σm−1 ∈ Σ satisfying
the following conditions [8]:

C7) xi+1 ∈ δ(xi, σi) for i = 0, 1, . . . ,m− 1
C8) σi ∈ f ′(xi) for i = 0, 1, . . . ,m− 1
C9) xm = x
The control law f ′ achieves the behavior specified by the

predicate R′(Q↑). This fact is mathematically represented
Re(f ′/G) = R′(Q↑) and can now be proven using logic
similar to that employed in Theorem 1 of Section III (proved
in [12]).

Theorem 3: Let Q ∈ P be a predicate. If Q↑(x0) = 1 and
f ′ is given by (10), then Re(f ′/G) = R′(Q↑).

Proof: Since f ′/G has the same state set as G and
x0 is the initial state of G, x0 is reachable in f ′/G. That
is, Re(f ′/G)(x0) = 1. By assumption, we also have that
Q↑(x0) = 1. Step 1 of Algorithm 3 then provides that
R′(Q↑)(x0) = 1.
(≤) We will next show that Re(f ′/G) ≤ R′(Q↑) by
induction. For any x ∈ X − {x0} with Re(f ′/G)(x) = 1,
there exist x1, x2, . . . , xm ∈ X and σ0, σ1, . . . , σm−1 ∈ Σ
satisfying conditions C7−C9. For the basis step, we already
have that Re(f ′/G)(x0) = R′(Q↑)(x0) = 1. For the
induction step, suppose that R′(Q↑)(xk) = 1. We now want
to show that R′(Q↑)(xk+1) = 1 where xk+1 ∈ δ(xk, σk) by
C7. Consider two cases:

1) If σk ∈ Σu, we then have that Q↑(xk+1) = 1 since
Q↑(xk) = 1 and Q↑ ≤ wlpσk

(Q↑). Furthermore, since
σk ∈ Σu we have that σk /∈ A′Q↑(xk). This and the
fact that δ(xk, σk)! provides that R′(Q↑)(xk+1) = 1
by Step 2 of Algorithm 3.

2) If σk ∈ Σc, then by condition C8 and (10), we have
σk ∈ f ′(xk) = Σ−A′Q↑(xk). Therefore, by Step 2 of
Algorithm 3 we again have that R′(Q↑)(xk+1) = 1.

This completes the induction.
(≥) We will now show that Re(f ′/G) ≥ R′(Q↑). For
any x ∈ X − {x0} with R′(Q↑)(x) = 1 there exist
x1, x2, . . . , xm ∈ X and σ0, σ1, . . . , σm−1 ∈ Σ satisfying
conditions analogous to C3 − C6 but for Q↑ instead of Q.

To show that Re(f ′/G)(x) = 1, it is sufficient to prove that
σi ∈ f ′(xi)(i = 0, 1, . . . , m−1). By condition C3 and (10),
we have σi ∈ Σ−A′Q↑(xi) = f ′(xi).

Based on the definition of the sets A′Q↑(x) employed by
f ′, it can also be seen that the following relation is implied:

For any x, x′ ∈ X with x′ ∈ IQ↑(x),
σ ∈ f ′(x) ∩ ΣG(x) ⇒ σ ∈ f ′(x′) (11)

The above then leads to a result that is similar to (3):

For any x, x′ ∈ X, x′ ∈ IQ↑(x) ⇒
f ′(x) ∩ ΣG(x) ∩ ΣG(x′) = f ′(x′) ∩ ΣG(x) ∩ ΣG(x′) (12)

The above expression captures that the control applied
by f ′ is consistent between states that are indistinguishable
for those active events that are shared between the states.
The limitation of consistency to those active events shared
between states demonstrates the limited transitivity that pro-
vides the improvement of our covering-based approach.

Under full observation, we could just apply the state-
feedback law f ′. However, since some states cannot be
distinguished for certain strings, we will need to define our
covering-based control law as a function of observed strings,
S : P (L(G)) → 2Σ.

S(s) =
⋂

x∈δf′ (x0,t)

f ′(x),∀t ∈ P−1(s) (13)

The expression in (11) indicates that the control law S
working under partial observation will produce the same
behavior as f ′ working under full observation. This fact is
captured by the following proposition where Re(S/G) ∈ P
represents the predicate that is true only at states of G that
are reachable under the control S.

Proposition 1: Let G be an automaton. For the state-
feedback law f ′ given by (10) and the covering-based
feedback law S given by (13), Re(f ′/G) = Re(S/G).

Proof: Follows from (11).
The covering-based control law S can be implemented on-

line from the automaton that results from the state-feedback
law f ′ under full observation, f ′/G, which is calculated off-
line. Specifically, following the observation of a string s we
keep track of the possible set of states reached by strings
with same observation s; those events that are active at these
states then must be enabled.

A summary of the construction of the resulting controlled
subpredicate Re(f ′/G) = R′(Q↑) is given below.

Algorithm 4: R′(Q↑) Construction
Input: plant automaton G and specification predicate Q
Step 1: Find Q↑, the supremal Σu-invariant subpredicate.
The algorithm of [11] can be employed.
Step 2: Construct the mapping IQ↑ of indistinguishable states
for the predicate Q↑. The algorithm of [3] can be used for
this purpose and has polynomial complexity in the number
of events and states.
Step 3: Construct the sets of prohibited events A′Q↑(x) to
satisfy (7). Algorithm 2 can be employed.

Step 4: Follow Algorithm 3 to construct the transformed
predicate R′(Q↑).
Output: R′(Q↑) ¦

In the above, Step 2 and Step 3 could be addressed
simultaneously by a single algorithm. Note that each step
of the above algorithm has polynomial complexity in the
number of events and states of G.

V. SUBPREDICATE CONSTRUCTION EXAMPLE

In this section we present an example that helps to
illustrate our subpredicate construction procedure introduced
in Algorithm 4. Consider the partially observed nondeter-
ministic plant automaton G pictured in Fig. 2 and let Q be
the specification predicate given below:

Q(x) =
{

1 if x ∈ {0, 1, 2, 3, 4, 6, 7, 8}
0 if x ∈ {5, 9}

 b

 a

 d

 0

 1

 2

 3

 5

 4

 a

 a
 b

 c

 c

 d

 b

 b

 6

 7

 8 9

 a

 d

 b d

 d

 d

 c

 e

Fig. 2. Plant automaton G

Also let the event set of G be partitioned into controllable
and uncontrollable events as follows, Σc = {a, b, c, e} and
Σu = {d}. By inspection, the predicate Q is not Σu-invariant
because state 9 is not accepted by Q, yet state 9 is reached
by the uncontrollable event d from state 8 that is accepted
by Q. Therefore, according to Step 1 of Algorithm 4, the
supremal Σu-invariant subpredicate Q↑ is constructed:

Q↑(x) =
{

1 if x ∈ {0, 1, 2, 3, 4, 6, 7}
0 if x ∈ {5, 8, 9}

Now consider that the event set of G is also partitioned
into observable and unobservable events as follows, Σo =
{a, b, c, d} and Σuo = {e}. Since G is partially observed
and nondeterministic, some of its states are indistinguishable.
Following Step 2 of Algorithm 4, the mapping IQ↑ repre-
senting which states are indistinguishable is then constructed.
For the subpredicate Q↑ we will represent IQ↑ as Table I.
Specifically, the lefthand column enumerates each state x ∈
X for which Q↑(x) = 1 and the center column lists the
corresponding set of indistinguishable states IQ↑(x).

Step 3 of Algorithm 4 then constructs the sets of pro-
hibited events A′Q↑(x). Examining state 6 of G, since the
b event leads to a state not accepted by the predicate Q↑,
wlpb(Q↑)(6) = 0 and b must be in the set A′Q↑(6). It then
follows that b is also in the set A′Q↑(0) since state 0 is
accepted by Q↑, is indistinguishable from state 6, and the b

event is possible at state 0. Following this string of logic, b is
then in the set A′Q↑(7) since state 7 is indistinguishable from
state 0 while being accepted by Q↑ and having b possible.
Since there are no further states in IQ↑(0), IQ↑(6), or IQ↑(7)
for which a b event is defined, the transitivity is terminated.
Further examination of G shows that a ∈ A′Q↑(4) since an a

event leads from state 4 which is accepted by Q↑ to state 5
which is not. It then follows that a is also in the set A′Q↑(3)
since state 3 is indistinguishable from state 6, 3 is accepted
by Q↑, and a is possible at state 3. Since there are no other
states in IQ↑(3) or IQ↑(4) for which an a event is defined,
and since there are no other events required to be actively
disabled by Q↑, all the sets A′Q↑(x) are now completely
defined.

TABLE I
TABLE REPRESENTING THE MAP IQ↑

.

x IQ↑ (x) A′
Q↑ (x)

0 0, 6, 7 b
1 1, 3
2 2, 6
3 3, 1, 4 a
4 4, 3, 6 a
6 6, 2, 4, 0 b
7 7, 0 b

Step 4 of Algorithm 4 then applies the transformation R′.
Since state 2 is reached only by the event b originating at
state 0 and b ∈ A′Q↑(0), state 2 will not be allowed by the
transformed predicate R′(Q↑). All other states, however, are
reachable via transitions that are not prohibited by the sets
A′Q↑(x). The end result of Algorithm 4 for this example is
thus:

R′(Q↑)(x) =
{

1 if x ∈ {0, 1, 3, 4, 6, 7}
0 if x ∈ {2, 5, 8, 9}

The plant G under the control of the associated feedback
law S then satisfies the resulting subpredicate R′(Q↑).
Figure 3 shows the portion of G reachable under the control
of S. The short dashed lines indicate disabled transitions.

 b

 a

 d

 0

 1 3

 4

 a a
 b

 c

 c

 b

 b

 6

 7

 a

 d

 d

 e

 b

Fig. 3. Automaton representing the reachable portion of G under the
control law S

Remark 1: In traditional state-feedback control employing
a mask M , states 0 and 4 would be in the same partition
since state 0 is indistinguishable from state 6 and state
6 is indistinguishable from state 4. Therefore, traditional

approaches would have disabled the a event at state 0 also.
This example along with (9) demonstrates the advantage
of our approach over the state-feedback control approaches
of [9] [14].
Remark 2: Our covering-based approach, however, still
produces a static control law. For example, if for some
reason the b event at state 6 needed to be disabled following
observation of the string ab = P (aeb), but not following
observation of the string abcd, our control law would not be
able to make that distinction.
Remark 3: States 3 and 4 are indistinguishable in G
because they are both reached by strings with the observation
abcbd. If we had recalculated the mapping IQ↑ during the
construction of R′(Q↑) for an intermediate subpredicate that
does not accept state 2, then states 3 and 4 would no longer
be indistinguishable. This new mapping would then not have
led to a prohibited event set that required that the a event
at state 3 be disabled. If we allowed the IQ↑ mapping to
change within the calculation of the transformation R′, then
the resulting subpredicate would depend on the order in
which the states were addressed. This dependence is an issue
common also to event-feedback approaches to control under
partial observation.
Remark 4: We have shown that our approach is more
permissive than the approach proposed by [9]. The approach
of [9] in turn has been shown to provide more permissive
control than the construction of the supremal controllable
and normal subpredicate presented in [14]. A predicate is
normal if all elements of M−1(M(x)) satisfy the predicate
when the state x satisfies the predicate, where

M−1(M(x)) = {x′ | M(x) = M(x′)}
The example presented in this section, therefore, also shows
how the approach of [14] is more restrictive than our ap-
proach. Since in our example states 1 and 5 are both reached
by the same string aba, they both have the same observation
under M , but state 1 is accepted by the predicate R′(Q↑)
while state 5 is not. Therefore, the subpredicate R′(Q↑)
violates normality. Construction of the supremal normal and
controllable subpredicate would then not accept state 1.
Remark 5: Assuming G additionally has a set of marked
states, if it were desired that the closed-loop system be
nonblocking, we would need to transform the predicate
so that states that were blocking under the control law S
were not accepted by the predicate. This transformation of
the predicate, however, could result in the loss of the Σu-
invariance property or failure of (12) (assuming f ′ reflects
the new subpredicate). Therefore, it would then be necessary
to iterate Algorithm 4 until the resulting control law did not
lead to any blocking states. This approach was taken in [15]
where we applied the covering-based control approach of this
paper.

VI. CONCLUSIONS

In this work we have presented a new covering-based
approach to state avoidance under partial observation that is
implemented on-line and avoids exponential computational

complexity. This approach allows more permissive behavior
than can be achieved by existing state-feedback approaches.
Existing approaches to state-feedback control under partial
observation require that the control be consistently applied at
states in the same observation partition. We rather generate
a covering of the state space that allows for the application
of a less restrictive control law.

The results of this paper can be applied to generating con-
trol based on abstracted models. In particular, our approach
could be used in conjunction with abstraction techniques
based on observation equivalence [16] and conflict equiv-
alence [17]. We have applied the approach of this paper to
generate coordinators that resolve conflict between modular
supervisors using conflict-equivalent abstractions [15].

VII. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the anonymous re-
viewers for their helpful and detailed comments.

REFERENCES

[1] R. Su and J. Thistle, “A distributed supervisor synthesis approach
based on weak bisimulation,” in Proc. Int. Workshop on Discrete Event
Systems (WODES), Ann Arbor, USA, 2006, pp. 64–69.

[2] H. Flordal and R. Malik, “Modular nonblocking verification using con-
flict equivalence,” in Proc. Int. Workshop on Discrete Event Systems
(WODES), Ann Arbor, USA, 2006, pp. 100–106.

[3] W. Wang, S. Lafortune, and F. Lin, “An algorithm for calculating
indistinguishible states and clusters in finite state automata with
partially observable transitions,” Systems Control Letters, vol. 56, pp.
656–661, 2007.

[4] F. Lin and W. Wonham, “On observability of discrete event systems,”
Information Sciences, vol. 44, pp. 173–198, 1988.

[5] A. Overkamp, “Supervisory control using failure semantics and partial
specification,” IEEE Trans. Automat. Contr., vol. 42, pp. 498–510,
April 1997.

[6] M. Heymann and F. Lin, “Discrete-event control of nondeterministic
systems,” IEEE Trans. Automat. Contr., vol. 43, 1998.

[7] C. Zhou, R. Kumar, and S. Jiang, “Control of nondeterministic
discrete-event systems for bisimulation equivalence,” IEEE Trans.
Automat. Contr., vol. 51, no. 5, pp. 754–765, May 2006.

[8] Y. Li and W. Wonham, “Control of vector discrete event systems-part
I: The base model,” IEEE Trans. Automat. Contr., vol. 38, no. 8, pp.
1215–1227, 1993.

[9] S. Takai and S. Kodama, “Characterization of all M-controllable
subpredicates of a given predicate,” Int. J. of Control, vol. 70, no. 4,
pp. 541–549, 1998.

[10] R. Kumar, V. Garg, and S. Marcus, “Predicates and predicate trans-
formers for supervisory control of discrete event dynamical systems,”
IEEE Trans. Automat. Contr., vol. 38, pp. 232–247, 1993.

[11] P. J. G. Ramadge and W. M. Wonham, “Modular feedback logic for
discrete event systems,” SIAM Journal of Control and Optimization,
vol. 25, no. 5, pp. 1202–1218, 1987.

[12] S. Takai, T. Ushio, and S. Kodama, “Static-state feedback control
of discrete-event systems under partial observation,” IEEE Trans.
Automat. Contr., vol. 40, no. 11, pp. 1950–1954, November 1995.

[13] S. Takai and S. Kodama, “M-controllable subpredicates arising in state
feedback control of discrete event systems,” Int. J. of Control, vol. 67,
no. 4, pp. 553–566, 1997.

[14] Y. Li, “Control of vector discrete-event systems,” Ph.D. dissertation,
University of Toronto, Toronto, Canada, 1991.

[15] R. Hill, “Modular verification and supervisory controller design for
discrete-event systems using abstraction and incremental construction,”
Ph.D. dissertation, University of Michigan, Ann Arbor, USA, 2008.

[16] R. Milner, Communication and Concurrency. London: Prentice-Hall,
Inc, 1989.

[17] R. Malik, D. Streader, and S. Reeves, “Conflicts and fair testing,”
International Journal of Foundations of Computer Science, vol. 17,
no. 4, pp. 797–813, 2006.

