
Modular Verification and Supervisory Controller

Design for Discrete-Event Systems Using

Abstraction and Incremental Construction

by

Richard Charles Hill

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2008

Doctoral Committee:

Professor Dawn M. Tilbury, Co-Chair
Professor Stéphane Lafortune, Co-Chair
Professor Shixin Jack Hu
Professor Feng Lin, Wayne State University

c© Richard Charles Hill 2008
All Rights Reserved

To John, Paul, George, Ringo, and Audry

ii

ACKNOWLEDGEMENTS

I have been very lucky to have not one, but two excellent advisors, Professor

Dawn Tilbury and Professor Stéphane Lafortune. They were both very available

and generous with their time, and let me set the direction of my work, while offer-

ing guidance and assistance as I needed it. Professor Tilbury’s contributions to the

research presented here, as well as to my overall professional development have been

substantial. Her support and guidance have helped me learn how to do research

and have prepared me well for the academic career that lies before me. Profes-

sor Lafortune is the person from whom I first became acquainted with the field of

Discrete-Event Systems. His course and subsequent advisement have illuminated

many difficult concepts and have helped me to gain a true appreciation for the field.

I would also like to acknowledge the contributions of Professor José Cury and Pro-

fessor Max de Queiroz of the Federal University of Santa Catarina in Florianópolis,

Brazil. My time spent in Brazil working with them led to the bulk of the work

presented in Chapter 5. Professor Cury and Professor Queiroz helped to provide me

a sounding board for the work, and made my wife and I feel quite at home during

our time in Brazil.

Most of all, I would like to thank my wife Audry for her support and patience.

She was always there to help me see the lighter side of things and to get me through

the sometimes long days of my graduate studies.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . viii

CHAPTER

1. Introduction . 1

1.1 Introduction to Discrete-Event Systems and Supervisory Control 1
1.2 Motivating Problem: State-Space Explosion 4
1.3 Prior Work . 5

1.3.1 Hierarchical supervisory control . 5
1.3.2 Modular supervisory control . 6
1.3.3 Incremental and modular verification 7
1.3.4 Conflict resolution . 8
1.3.5 Structural decentralized supervisory control 8
1.3.6 Interface-based supervisory control 9

1.4 Contributions . 10
1.4.1 Approach I: Incremental Hierarchical Supervisor Construction . . . 10
1.4.2 Approach II: Equivalence-Based Conflict Resolution 11
1.4.3 Approach III: Multi-Level Interface-Based Control 12

1.5 Outline . 13

2. Discrete-Event System Background . 14

2.1 Modeling of DES . 14
2.2 Supervisory Control . 15
2.3 Language-Based Abstraction . 19
2.4 State-Based Abstraction . 21

3. Incremental Hierarchical Supervisor Construction 23

3.1 Supervisor Construction Algorithm . 25
3.2 Optimal Control Without Abstraction . 34
3.3 Safe, Nonblocking Control With Abstraction 41
3.4 Implementation Examples and Discussion . 51

3.4.1 Ordering algorithm . 52
3.4.2 Flexible Manufacturing System (FMS) example 54
3.4.3 Automated Guided Vehicle (AGV) example 59
3.4.4 Complexity discussion . 60

iv

3.5 Chapter Summary . 62

4. Equivalence-Based Conflict Resolution . 64

4.1 Supervisor Construction and Abstraction . 65
4.2 Incremental Conflict Resolution Using Filters 68
4.3 Language-Based Filter Requirements . 70

4.3.1 Nonblocking . 71
4.3.2 Conflict-equivalence preserving rules 72
4.3.3 Controllability . 77
4.3.4 Supervisor reduction . 79

4.4 State-Based Filter Requirements . 81
4.4.1 Supervisory control in the presence of nondeterminism 81
4.4.2 State controllability and observability 82
4.4.3 State-based requirements . 86

4.5 Filter Law Construction . 87
4.5.1 State-based supervisory control . 88
4.5.2 Covering-based supervisory control 91
4.5.3 Covering-based filter construction 95
4.5.4 Filter construction example . 98

4.6 Flexible Manufacturing System (FMS) Example 101
4.7 Chapter Summary . 106

5. Multi-Level Interface-Based Control . 108

5.1 Hierarchical Interface-Based Supervisory Control 110
5.2 Global Nonblocking and Controllability . 113

5.2.1 Two-level case . 114
5.2.2 Multiple-level serial case . 118
5.2.3 General multiple-level case . 122

5.3 Supervisor Synthesis . 124
5.4 Interface Synthesis . 130
5.5 Implementation Examples and Discussion . 137

5.5.1 Flexible Manufacturing System (FMS) example 137
5.5.2 Complexity discussion . 145

5.6 Chapter Summary . 147

6. Conclusions and Future Work . 150

6.1 Contributions . 150
6.1.1 Approach I: Incremental Hierarchical Supervisor Construction . . . 150
6.1.2 Approach II: Equivalence-Based Conflict Resolution 151
6.1.3 Approach III: Multi-Level Interface-Based Control 151

6.2 Discussion . 152
6.3 Future Work . 155

6.3.1 Practical implementation . 155
6.3.2 Reducing complexity in diagnosis 157
6.3.3 Additional model reduction techniques 159

APPENDIX . 160

BIBLIOGRAPHY . 176

v

LIST OF FIGURES

Figure

1.1 Simple DES example . 2

1.2 Model of concurrent operation of two machines . 4

1.3 Flexible Manufacturing System (FMS) example . 5

1.4 Modular control of the FMS example . 7

1.5 IHSC approach to partitioning the FMS example 11

2.1 Illustrative example of nondeterminism . 21

3.1 IHSC approach to partitioning the FMS example 24

3.2 Portion of the FMS example . 25

3.3 Automata models of each machine in FMS portion 26

3.4 Automata models of each buffer in FMS portion 26

3.5 Example relationship between relevant event sets 27

3.6 Example relationship between relevant event sets; Σ1 is the shaded region 28

3.7 Example relationship between relevant event sets; Σ2 is the darkly shaded region . 30

3.8 Automaton representing the supervisor which marks the language K̂ ′
1,a 32

3.9 Diagram representing the relationship between various languages and alphabets . . 45

3.10 Automata models of each machine in the FMS example 55

3.11 Automata models of each buffer in the FMS example 56

4.1 Illustrative example of a conflict-equivalent abstraction 67

4.2 Example of an abstraction using an equivalence relation 75

4.3 Three specification example for demonstrating supervisor reduction 80

4.4 State controllability example . 82

vi

4.5 Example of a covering for indistinguishable states 91

4.6 Filter construction example . 99

4.7 Filter construction example . 100

5.1 Illustration of the multiple-level architecture . 109

5.2 Detail of the multiple-level architecture . 110

5.3 Example illustrating the relaxation of Point 4 . 118

5.4 Illustration of approach of proofs . 119

5.5 Example system for interface synthesis . 136

5.6 Example interfaces for system in Fig. 5.5 . 136

5.7 Extended FMS example . 137

5.8 Additional components of the extended FMS example 138

5.9 Hierarchy imposed on the extended FMS example 141

5.10 Resulting interfaces for the extended FMS example 143

5.11 Two-level partition of a larger FMS example . 147

5.12 Multiple-level partition of a larger FMS example 148

vii

LIST OF TABLES

Table

3.1 Application of Algorithm 3.1 to FMS example . 58

3.2 Summary of Results for IHSC Approach . 60

4.1 Table representing the map IH↑
0

. 99

4.2 Table representing the map IH↑
1

. 100

4.3 Application of Algorithm 4.6 to FMS example . 104

5.1 Application of Algorithm 5.29 to extended FMS example 144

6.1 Summary of Results for the FMS example . 154

viii

CHAPTER 1

Introduction

The aim of the work described in this dissertation is to reduce the complexity and

improve the ease with which supervisory controllers are designed for discrete-event

systems (DES). These goals are achieved by proposing methodologies that design

controllers modularly and that employ abstraction. The details of these proposed

approaches will be described and their correctness proven. The complexity reduc-

tion provided by these approaches will also be demonstrated through application to

illustrative examples.

1.1 Introduction to Discrete-Event Systems and Supervisory Control

DES are dynamic systems characterized by discrete states and event-driven evolu-

tion. Care is taken to distinguish DES from digital or discrete-time systems. Whereas

digital systems are continuous systems sampled at discrete intervals of time, DES

are fundamentally discrete. The state of a DES could be a buffer being empty or

full, a machine being idle or busy, or a transmission being in second or third gear.

Furthermore, DES evolve according to events, like a part arriving at a machine or a

continuous signal entering some range of values.

Figure 1.1 shows an example of a generic, isolated machine modeled as a DES using

a finite state automaton [77]. The modeled states represent the machine being Idle

(I), Working (W) or Broken (B), as opposed to perhaps more customary continuous

states like the position or cutting force of a tool bit. Transitions between these

discrete states are indicated by the events start (s), finish (f), break (b), and repair

(r), as opposed to evolving according to time.

A DES model of a system such as a milling machine or an automobile can be

1

2

 I B

W

 b

 r

 s

 f

Figure 1.1: Simple DES example

surprisingly useful in answering many questions about its behavior. A DES model is

appropriate for designing the high-level coordinating control for a complex system,

or for answering questions that are fundamentally discrete such as, “has this machine

experienced a fault?”

The development and implementation of logic controllers, and the analysis of

DES in general, traditionally has been handled in a rather ad hoc manner. When

designing a factory, for instance, it may seem that the control of the flow of parts

through a series of machines would be very simple: supply part to machine A, when

machine A finishes its operation, move part to machine B, and so forth. In this

day and age, however, much more complex and flexible types of operation are often

required of systems. For example, it may be desired that the same machine perform

operations on several different types of parts in order to maximize utilization of

the factory, or that multiple instances of the same type of part be processed by a

factory in various stages of completion at the same time. In these situations, it is

possible that a machine can finish multiple parts before the next machine in the

process is ready, thereby causing a buffer to overflow, possibly damaging the parts

or a machine. Another possible problem could be that a machine gets starved of

parts that it needs, either due to a fault upstream of the machine or just due to poor

design. This kind of situation could cause the whole factory to reach a deadlock,

wasting precious production time and ultimately, money.

While again it may seem that these types of problems should be easily avoided

just by the common sense of the designer, one might be surprised just how quickly

the complexity of a system grows beyond the designer’s comprehension. Problems

encountered in one’s everyday life, like a desktop PC crashing or a car’s check engine

light coming on for no apparent reason, help to indicate just how difficult the control

and analysis of DES can be. It is with these problems in mind that academia has

3

begun to look at developing tools that are capable of making theoretical guarantees

about the operation of DES. For example, it is desirable to know that when a factory

commences operation, it is not going reach a deadlock during its operation. Or if a

sensor on a car fails, then the diagnostic system will be able to recognize the failure

within a certain amount of time.

In recent years, a substantial body of work has been built up to provide a theoret-

ical framework for answering questions about DES. References [5] and [77] provide

a good introduction to the field. At its most basic level, a controller for a discrete

system is just another DES model that runs in parallel with the plant. A typical

control specification usually can be generated heuristically. For instance, a specifica-

tion might model the desired flow of a part through a factory or the desired sequence

of operations of some machine. Difficulties arise, however, when the desired control

specification cannot be achieved or if multiple goals conflict with each other. With

this in mind, most of the theoretical results in DES control have focused on the

supervisory control framework introduced by Ramadge and Wonham [58]. Super-

visory control is characterized by restricting the operation of a system to prevent

undesirable events from happening, rather than commanding events to happen. In

this sense, a supervisory controller works on top of a DES and disables events to

keep a system safe and live. Safety means that the controlled behavior of the sys-

tem is kept within a desired set of behaviors. Liveness means that the system will

never reach a deadlock. Nonblocking is a type of liveness which indicates that the

system can always reach some “goal” state. This usage of the term blocking is differ-

ent than typically used in manufacturing. In traditional manufacturing terminology,

blocking rather means that a machine cannot advance to the next state at that mo-

ment in time. Therefore, in manufacturing blocking is a temporal property, while in

supervisory control blocking means that the system can never reach a goal state.

Another goal common to supervisory controller design is controllability, which

guarantees that the proposed control actually can be implemented, that is, the con-

troller does not require events to be disabled that cannot be controlled. It is also

desirable that the resulting control be optimal. In this context, optimal means that

the controlled behavior is as large as possible. In other words, the control is maxi-

mally permissive.

4

1.2 Motivating Problem: State-Space Explosion

Despite all the advancements that have been made in the area of DES theory,

application to real-life systems has been somewhat slow. A significant hurdle to

the adoption of these methods is the state-space explosion that occurs in modeling

systems of the size most commonly found in industry. Consider two instances of

the machine shown in Fig. 1.1 where the event labels are appended by a “1” for

the first machine and a “2” for the second machine. Since each machine has three

states and since the machines are completely independent, an automaton model of

their concurrent operation will need 3 × 3 = 9 states. Figure 1.2 offers a model of

the operation of the two machines where each state is given by a pair (q1, q2) where

the first element represents the state of the first machine and the second element

represents the state of the second machine. From this example one can see that the

state space grows exponentially with the number of components in the system.

I,I I,B I,W
 b1

B,B B,W

W,B W,W

B,I

W,I

 r1

 s1

 f1

 b1

 r1

 s1

 f1

 b1

 r1

 s1

 f1

 b2 r2

 s2 f2

 b2 r2

 s2 f2

 b2 r2

 s2 f2

Figure 1.2: Model of concurrent operation of two machines

Consider the slightly larger Flexible Manufacturing System (FMS) example shown

in Fig. 1.3 consisting of six machines and five buffers, where it is desired that the

buffers never underflow or overflow [9]. For now, we will assume that each machine

model has three states and each buffer model has two states. Here each buffer has

the capacity to hold a single part and its states are empty and full. A more in-depth

explanation of this example can be found in Section 3.4. The traditional approach to

this control problem is to build a single monolithic supervisor for the entire combined

5

system. The maximum possible size of the controller for this simple system is then

23,328 states (36 × 25). Since these components are not independent, the number of

reachable states of the controlled monolithic system will be less than this number.

One can, however, imagine the difficulty that arises for systems of an even more

realistic scale.

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Figure 1.3: Flexible Manufacturing System (FMS) example

1.3 Prior Work

Most problems of interest in the field of DES suffer from this same problem of

complexity, no matter the particular framework or approach taken. As a result,

a significant portion of the work being done in the area attempts to address the

state-space explosion problem.

1.3.1 Hierarchical supervisory control

One possible solution to the problem of complexity is to apply a hierarchical ap-

proach to supervisory controller design. In this approach, the supervisor is designed

based on an abstracted version of the monolithic system. By abstracting away de-

tails of the system, less computation is necessary if the design or analysis can be

performed on the simplified version of the system. The challenge of this approach

is to be able to provide consistency between the desired control designed for the ab-

stracted “high-level” system and its effect on the actual, unabstracted plant at the

“low-level.”

6

The concept of hierarchical supervisory control was initially proposed by [80]. This

work introduced a formal notion of hierarchical consistency which guaranteed that

the control designed on the high-level system could be implemented on the actual

low-level plant. This work also introduced a notion of output-control-consistency that

can be employed to guarantee optimality of the behavior achieved at the low-level.

The theory of hierarchical supervisory control was then extended by [75]. This work

demonstrated conditions on the controller structure and abstraction that provide

hierarchical consistency. This work also introduced the notion of an observer which

can be used to guarantee that the property of nonblocking is preserved between levels

of the hierarchy. Related work proposes a hierarchical approach that aggregates

states of an automaton model to generate a reduced order model [4] [30].

A drawback of these hierarchical approaches to control is that they require that

the monolithic system be built before the abstraction is applied. Yet, due to the

state-space explosion problem, the monolithic system may be too large to build in

the first place. Furthermore, generating the abstraction for such a large system

can be computationally prohibitive, even if the monolithic system can be generated.

Another limitation of these works is that the requirements on the abstractions em-

ployed can be quite stringent and can limit the amount of model reduction that can

be achieved.

1.3.2 Modular supervisory control

Another approach for reducing the complexity associated with supervisor design

is to employ a modular approach to control. In modular supervisory control, a

series of smaller supervisors that each meet a single component specification are

constructed, rather than building a single monolithic supervisor that satisfies all

specifications simultaneously. The work of [57] introduced this approach and builds

each supervisor with respect to the full global plant. In contrast, the work of [8]

builds a local modular supervisor with respect to the subset of the full plant that

is relevant to the given specification. For the FMS example first shown in Fig. 1.3,

each modular supervisor would be built to monitor a single buffer. The partitioning

shown in Fig. 1.4 demonstrates the subplants that each modular supervisor would

be built with respect to under the approach of [8].

The advantage of modular supervisory control is that it avoids building the full

7

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Figure 1.4: Modular control of the FMS example

monolithic system, thereby avoiding the state-space explosion problem. These modu-

lar approaches to control are able to provide safety, but do not guarantee nonblocking

unless the modular supervisors are shown a priori to be nonconflicting. Unfortu-

nately, verifying nonconflict typically is as computationally expensive as building

the monolithic system [5]. If the modular supervisors are nonconflicting, then the

behavior achieved by their conjunction is also optimal.

Work also exists for constructing modular supervisors in the case where a global

specification is not given in a component-wise manner [23] [32] [33]. These works,

however, do not address blocking. The work of [2] also addresses the synthesis of

modular supervisors without addressing blocking.

Decentralized supervisory control is another approach that is similar to modular

supervisory control. In this approach, a series of smaller supervisors are built for

each component specification with respect to an abstraction of the global plant.

This approach to control was introduced by [45]. As was the case with modular

supervisory control, a set of decentralized supervisors will not guarantee nonblocking

behavior when acting in conjunction unless they are nonconflicting.

1.3.3 Incremental and modular verification

As noted in the previous section, a major limitation of modular and decentral-

ized approaches to supervisory control is that they do not guarantee nonblocking

unless the component supervisors are nonconflicting. With this in mind, results

8

have been generated to help reduce the complexity associated with verifying non-

conflict [21] [54]. Both of these approaches essentially construct the global system

incrementally using abstraction in order to reduce the complexity of verification.

In particular, the work of [54] employs an abstraction with the observer property

introduced by [75] that preserves observation equivalence, while [21] employs an ab-

straction that preserves conflict equivalence.

Other works exist that verify controllability incrementally [2] [20]. The work [20]

in particular focuses on the nuances of verifying controllability when the event sets

of the component languages are different from one another.

1.3.4 Conflict resolution

In recent years, research has emerged that attempts to combine aspects of the

hierarchical, modular, and incremental approaches of earlier works. In particular,

the work of [76] introduced an approach to control that builds modular supervisors

then adds another level of control to resolve the conflict among the supervisors. Ab-

straction is employed to further reduce the complexity of the approach. Nonblocking

control is achieved by requiring the observer property of the abstraction and opti-

mality is achieved by additionally requiring output-control-consistency. This work

provides very general results, but it is rather theoretically complex and computational

tools do not exist for carrying out the proposed methods. The results of [17] address

some of these limitations by generating similar results specifically for the framework

of supervisory control with natural projection employed as the abstraction.

1.3.5 Structural decentralized supervisory control

When the notion of decentralized supervisory control was introduced in Sec-

tion 1.3.2, it was noted that the property of nonconflict guarantees that the de-

centralized supervisors will not block one another if they are individually nonblock-

ing. Other work has been developed which proposes a different set of conditions on

the synchronization of two local subsystems that will also result in the controlled

subsystems not blocking one another [42]. This work is referred to as structural

decentralized control and has been extended by [60] [61] to employ abstraction to

further reduce the computational complexity of the approach. These works do not,

however, specify how to construct components that possess the required structural

9

properties.

1.3.6 Interface-based supervisory control

The work of [38] [41] offers another approach to modular verification where con-

trollability and nonblocking are verified by introducing interfaces that limit the in-

teraction between components. In this approach, all events that are shared between

a pair of components must be included in the event set of their interface and each

of the shared events is classified as either a “request” or an “answer.” The intuition

behind this is that one of the components is the “high level” that requests an action

and the other component is the “low level” that answers when the requested action

has been completed. An aspect of this work that distinguishes it from some other

approaches is that the high level is not just an abstracted version of the low level.

Rather, the two levels operate concurrently and the order of their common events is

synchronized through their interface.

If the system consisting of the high level, the low level, and the interface meets a

series of conditions that qualify it as being interface consistent, then controllability

and nonblocking can be verified modularly without constructing the full monolithic

system. This approach to verification is different than the other approaches intro-

duced earlier that verify nonconflict in that it is truly modular. The other works are

efficient in the way that they incrementally build a system using abstraction, but

ultimately they are building the global system. Those works therefore are limited

in the amount of reduction in computational complexity they are able to achieve by

the abstraction they employ. In addition to reducing the complexity of verification,

the use of interfaces also allows for components to be replaced in the system without

reanalyzing and redesigning the entire system.

One drawback is that the structure imposed on the system limits the flexibility

and optimality of the control. Additionally, since the architecture consists of only

two levels and the analysis requires that the high-level module be composed with

all the interfaces simultaneously, exponential growth of the state space still occurs,

though generally at a reduced rate. Another limitation of this work is that it does not

provide a method to generate these interfaces. The examples to which this approach

has been applied have had their interfaces constructed in an ad hoc manner. Work

has been done, however, that develops algorithms to construct component supervisors

10

that are optimal with respect to a given set of interfaces [39].

Similar work that also applies a structured interface to assist with modular veri-

fication is presented in [11]. In this work, a modified version of finite state machines

termed modular finite state machines are employed to model the system components.

Furthermore, there is no high level or low level, interfaces just exist between each

of the components that interact, that is, which share events. It is shown that this

structure allows for the modular verification of some properties, though nonblocking

is not one of them.

1.4 Contributions

As can be seen from the previous section, addressing the state-space explosion

problem with regard to the analysis and control of DES is an active area of re-

search. The work of this dissertation specifically proposes three new approaches

that similarly aim to reduce the overall computational complexity of generating safe,

nonblocking supervisory control. The inspiration for the approaches developed in

this dissertation derives from many of the works mentioned in the previous section.

The three approaches of this dissertation also share some interesting similarities with

some of the previously mentioned works that were developed independently over the

same approximate time frame.

1.4.1 Approach I: Incremental Hierarchical Supervisor Construction

The first approach to controller design provides a unique procedure for construct-

ing a set of modular supervisors that provide safe, nonblocking control without having

to construct the unabstracted monolithic system and without having to verify non-

conflict. This approach will be referred to as Incremental Hierarchical Supervisor

Construction (IHSC) and its details have been presented in a paper at the Interna-

tional Workshop on Discrete-Event Systems [26] and in a paper in the International

Journal of Control [27].

The modular supervisors of this approach are constructed incrementally so that

each successive supervisor is built with respect to a larger portion of the global plant.

Figure 1.5 illustrates how the subsystems could be generated for the FMS example

introduced earlier. Each time a new supervisor is constructed, an abstraction with

the observer property is applied to abstract away those elements of the current sub-

11

system that are not needed for any of the specifications that have not yet been

addressed. This incremental approach with abstraction allows global information to

be obtained without constructing the full unabstracted monolithic system. Addi-

tionally, nonconflict never has to be verified since in this approach the supervisors

are built to be nonconflicting by construction.

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Figure 1.5: IHSC approach to partitioning the FMS example

Through application to some illustrative examples, this approach to supervisor

construction is demonstrated in many cases to greatly reduce the size of the automata

that must be constructed as compared to existing approaches. This reduced state

size indicates that the computational complexity of constructing the supervisors has

been reduced.

1.4.2 Approach II: Equivalence-Based Conflict Resolution

The second approach to control proposed in this dissertation has a similar struc-

ture to the work of [17], where modular supervisors are constructed along with an ad-

ditional level of control to resolve conflict among the supervisors. The work presented

here, however, is unique in that it employs a different type of abstraction. Specifi-

cally, an abstraction that preserves conflict properties rather than an observer-type

abstraction is employed. In this work, requirements for achieving safe, nonblocking

control are provided and an algorithm for designing the conflict-resolving control is

proposed. This approach will be referred to as Equivalence-Based Conflict Resolu-

12

tion (EBCR) and its details have been presented in a paper at the American Control

Conference [28].

The EBCR approach incrementally composes modular supervisors applying ab-

straction each time a new module is added. At each step if the resulting composition

is blocking, then a coordinator is constructed to resolve the conflict. The abstraction

employed in this approach generates a greater reduction in model state size than the

observer-type abstraction employed by other works. The EBCR approach is able to

employ this less restrictive abstraction because it is solely trying to capture enough

information to identify conflicts among modules. In most existing work, the abstrac-

tion needs to be coarse enough that a supervisor can be designed to satisfy a given

specification without blocking based on the abstracted system. A detailed analysis

of these abstractions can be found in [49].

The algorithm developed for constructing the conflict-resolving control is also a

new approach to solving the general state avoidance problem. The algorithm pro-

duces a new covering-based approach to control that is shown to be less restrictive

than any state-feedback methodology that currently exists in the literature. Further-

more, this covering-based control can be applied to nondeterministic and partially-

observed systems and is constructed with polynomial complexity.

1.4.3 Approach III: Multi-Level Interface-Based Control

In the third approach of this dissertation, the two-level hierarchical interface-based

approach to supervisory control developed in [38] [39] [41] is generalized to multiple

levels. The more general multiple-level architecture is advantageous because it allows

a system to be partitioned into smaller pieces, thereby further improving the advan-

tage in complexity and reconfigurability offered by an interface-based approach to

control. In this dissertation, a promising methodology for constructing the interfaces

required of this approach is also developed. This overall approach will be referred to

as Multi-Level Interface-Based Control (MLIBC) and its details have been presented

in a paper at the American Control Conference [25].

In the IHSC and EBCR approaches, the monolithic system is essentially built

incrementally using abstraction. By constructing the system in this manner, global

information can be obtained without constructing the full, unabstracted monolithic

system. The reduction in complexity provided by these approaches is, therefore,

13

dependent on the amount of abstraction that can be achieved at each step of the

process. If insufficient abstraction can be achieved for a given system, then the state

space will still grow exponentially, though at a possibly reduced rate compared to

building the unabstracted monolithic system. In the MLIBC approach, the use of

interfaces allows analysis and design to be performed locally, thereby avoiding the

possibility of exponential growth that comes with building the global system.

One drawback of an interface-based approach is that the additional structure im-

posed on the system can lead the resulting control to be suboptimal. The exchange

of optimality for a reduction in computational complexity is an element common

to all three approaches of this dissertation. Often this trade-off is acceptable since

the primary goal is to meet the controller specifications without blocking; optimality

is of secondary importance. Another limitation of an interface-based approach to

control is the problem of actually generating the interfaces. In this work a method-

ology is proposed by which the interfaces and component supervisors are synthesized

simultaneously such that the interfaces end up being abstractions of the controlled

modules. In applying this methodology for interface construction, the MLIBC ap-

proach begins to resemble the IHSC approach. The difference here, however, is that

the abstraction does not need the observer property and hence can often achieve a

greater reduction than the abstraction used in the IHSC approach. In a sense, using

this approach adds extra requirements on the structure of the component supervisors

in exchange for less requirements on the abstraction.

1.5 Outline

The organization for the remainder of this dissertation is as follows. Chapter 2

will provide some theoretical background and notation that is common to the whole

document. Chapters 3, 4, and 5 provide the details of the IHSC, EBCR, and MLIBC

approaches respectively. Chapter 6 summarizes the contributions of this dissertation

and proposes some directions for future work. The Appendix includes the proofs for

some results presented in the body of the dissertation. The FMS example of Fig. 1.3

will be referred to throughout this dissertation to help compare and contrast the

different approaches proposed herein.

CHAPTER 2

Discrete-Event System Background

2.1 Modeling of DES

DES are commonly modeled graphically using a formalism such as automata or

Petri nets. In this work DES will be modeled by possibly nondeterministic au-

tomata like the one pictured in Fig. 1.1 and represented by the five-tuple G =

(Q, Στ , δ, q0, Qm), where Q is the set of states, Στ = Σ ∪ {τ} is the set of events

including the silent event τ , δ : Q×Στ → 2Q is the state transition function, q0 ∈ Q

is the initial state, and Qm ⊆ Q is the set of marked states representing successful

termination of a process. In Fig. 1.1, states are shown by circles with an arrow

marking the initial state and double circles indicating marked states. Transitions

between states are marked by arrows with a label indicating the event name. Let Σ∗
τ

be the set of all finite strings of elements of Στ , including the empty string ε. The

function δ is extended to δ : Q× Σ∗
τ → 2Q in the natural way. The notation δ(q, s)!

for any q ∈ Q and any s ∈ Σ∗
τ denotes that δ(q, s) is nonempty. The notation ΣG(q)

will represent the set of feasible events of state q in automaton G, that is, those

events σ ∈ Στ for which δ(q, σ)!. A string s ∈ Σ∗
τ will be said to be accepted by an

automaton G if δ(q0, s)!.

The set of strings of events generated by an automaton model is called a language

and serves as another representation of the behavior of a DES. We will assume that

languages are constructed without use of the silent event τ . Let us now define the

concept of a language formally. Let Pτ : Σ∗
τ → Σ∗ be the natural projection which

erases the silent event τ from strings s ∈ Σ∗
τ . The general natural projection operator

is defined later in equation (2.2). The generated and marked languages of G, denoted

by L(G) and Lm(G) respectively, are defined by L(G) = {Pτ (s) ∈ Σ∗ | δ(q0, s)!} and

14

15

Lm(G) = {Pτ (s) ∈ Σ∗ | δ(q0, s) ∩ Qm 6= ∅}. For the string s = ru ∈ Σ∗
τ formed

from the catenation of the strings r and u, r is called a prefix of s and is denoted

r ≤ s. The notation K represents the set of all prefixes of strings in the language

K, and is referred to as the prefix-closure of K. The following eligibility operator

will be employed to denote which events in the set Σ are enabled in the language L

following the occurrence of a string s ∈ Σ∗, EligL(s) := {σ ∈ Σ | sσ ∈ L}.
An automaton is said to be nonblocking when from all of its reachable states

a marked state can be reached. From a language point of view, this is defined as

Lm(G) = L(G). If an automaton enters a state from which it cannot reach a marked

state, the automaton is said to have blocked.

2.2 Supervisory Control

Supervisory control of DES requires that the event set Στ be partitioned into

controllable and uncontrollable events, Στ = Σc∪̇Σu, where controllable events can be

disabled and uncontrollable events cannot. Traditionally, the theory of supervisory

control [58] has been developed for application to deterministic automata models

that do not include the silent event τ and are characterized by the fact that any

string can take the automaton to only a single state, that is, δ(q, s) has only a single

element for a given state q and string s. Nondeterministic automata can arise due to

abstraction where events are hidden by replacing them by the silent (uncontrollable)

event τ . Let Σh ⊆ Σ represent the set of events that have been hidden. Most of the

work of this dissertation will assume deterministic automata. The EBCR approach

to supervisory control discussed in Chapter 4 is an exception in that the abstraction

it employs can lead to nondeterminism. Note that languages are not sufficient for

capturing nondeterministic behavior.

We will define a supervisor, denoted S, to be a mapping that, upon observation

of a string generated by a plant G, outputs a list of events to be enabled. Since

uncontrollable events must always be enabled, the mapping S : L(G) → 2Σ implicitly

includes all uncontrollable events. It is the goal of supervisory control to restrict the

behavior of the uncontrolled plant to meet some given specification. This type of

language-based formulation of supervisory control is very common in the DES field

and implements an event-feedback law. An event-feedback law is characterized by

the fact that the control action it generates depends not on the current state of the

16

plant automaton G, but rather on the history of events that brought the system to

that state. A less common formulation of supervisory control implements a state-

feedback law that bases its control only on the plant’s current state. This type of

control will be addressed as part of the EBCR approach presented in Chapter 4.

Given a set of allowed behaviors K ⊆ Lm(G) and the set of uncontrollable events

Σu ⊆ Σ, the existence of a language-based supervisor that can successfully restrict the

operation of the plant within the behavior allowed by the specification is guaranteed

by satisfaction of the following language controllability condition [5]:

KΣu ∩ L(G) ⊆ K (2.1)

If the above expression holds, it is said that the language K is language control-

lable with respect to the language L(G). Note, language controllability is fundamen-

tally a property of a language’s prefix closure. At times the above property will also

be referred to as Σu-controllability in order to distinguish the set of uncontrollable

events being employed.

The operation of two automata together is captured via the synchronous compo-

sition (parallel composition) operator, denoted by ‖. By representing the supervisor

mapping S as an automaton S, and the open-loop plant as a separate automaton

G, the closed-loop or supervised behavior of the system can be modeled using the

synchronous composition operator, S‖G. Throughout this dissertation we assume

all automata have the same event set Στ . When two automata operate concurrently

they will synchronize on all events except τ , as specified by the following definition

of synchronous composition.

Definition 2.1. The synchronous composition of two automata G1 and G2, where

G1 = (Q1, Στ , δ1, q01, Qm1) and G2 = (Q2, Στ , δ2, q02, Qm2) is the automaton

G1‖G2 = (Q1 ×Q2, Στ , δ, (q01, q02), Qm1 ×Qm2)

where the transition function δ : (Q1 × Q2) × Στ → 2(Q1×Q2) is defined for q1 ∈
Q1, q2 ∈ Q2 and σ ∈ Στ as:

for σ = τ, δ((q1, q2), σ) =



δ1(q1, τ)× {q2} if δ1(q1, τ)! and ¬δ2(q2, τ)!

{q1} × δ2(q2, τ) if ¬δ1(q1, τ)! and δ2(q2, τ)!

(δ1(q1, τ)× {q2}) ∪ ({q1} × δ2(q2, τ)) if δ1(q1, τ)! and δ2(q2, τ)!

17

for σ ∈ Σ, δ((q1, q2), σ) =

δ1(q1, σ)× δ2(q2, σ) if δ1(q1, σ)! and δ2(q2, σ)!

else δ((q1, q2), σ) is empty. ¦
In terms of generated languages, L(G1)‖L(G2) = L(G1)∩L(G2). In some cases we

will assume that languages are defined over different event sets. In order to precisely

define the synchronous composition in this case, we will define the natural projection

operator, Pi : Σ∗ → Σ∗
i , as follows:

Pi(ε) := ε

Pi(e) :=





e, e ∈ Σi ⊆ Σ

ε, e /∈ Σi ⊆ Σ

(2.2)

Pi(se) := Pi(s)Pi(e), s ∈ Σ∗, e ∈ Σ

Given a string s ∈ Σ∗, the projection Pi erases those events in the string that are

in the alphabet Σ but not in the subset alphabet Σi. We can also define the inverse

projection as follows:

P−1
i (t) := {s ∈ Σ∗ : Pi(s) = t} (2.3)

The effect of the inverse projection P−1
i is to extend the local alphabet Σi to Σ.

In terms of automata, this is represented by adding self-loops at every state for each

event in the set (Σ − Σi). These self-looped events are in essence enabled at every

state and as such do not meaningfully restrict the behavior of the system. With this

in mind, we will refer to these events as being irrelevant and will not count them

when talking about the total number of transitions in an automaton and will not

draw them in figures. If an event is not self-looped at every state then it is logically

referred to as being relevant. The notation Σ(G) will be employed to denote the

relevant event set of the automaton G. The same notation will be used to denote

the relevant event sets of languages also. The following is taken from [2] and defines

the notion of an irrelevant event in terms of languages.

Definition 2.2. [2] For a language L ⊆ Σ∗, an event σ ∈ Σ is said to be irrelevant

for L, if we have for all s, t ∈ Σ∗

st ∈ L if and only if sσt ∈ L.

Otherwise σ is called relevant for L. ¦

18

The projection definitions given by equations (2.2) and (2.3) can be naturally

extended from strings to languages and then applied to give a formal definition of

the synchronous composition for languages defined over different event sets. In the

following, Pi : Σ∗ → Σ∗
i where Σ = ∪Σi.

L1‖L2‖ · · · ‖Ln := P−1
1 (L1) ∩ P−1

2 (L2) ∩ · · · ∩ P−1
n (Ln) (2.4)

Also note that ‖ is a commutative and associative operation. In addition to

determining the existence of a supervisor that can achieve a given specification, it is

also desirable that the controlled system be nonblocking. If and only if K ⊆ Lm(G)

is Lm(G)-closed (K = K ∩Lm(G)) and Σu-controllable with respect to the language

L(G), then a nonblocking supervisor exists such that the supervised behavior exactly

equals the admissible language K, and the set of marked behaviors exactly equals

K. If it is desired to implement a marking nonblocking supervisor, then only the

Σu-controllability condition is necessary [77]. A marking supervisor can in essence

unmark states of the uncontrolled plant G.

In the case that the controllability condition of equation (2.1) does not hold, and

a supervisor able to provide the behavior of K does not exist, it is desirable to find

the largest sublanguage of K for which such a supervisor does exist. This supremal

controllable sublanguage is denoted by K̂ = sup C(K, L) ⊆ K. This is thought of as

the optimal solution of the supervisory control problem in the sense that it is least

restrictive.

In this dissertation the plant G and specification E are modeled by deterministic

finite state automata given in the following component-wise manner:

G = G1‖ · · · ‖Gn and E = E1‖ · · · ‖Ep

In terms of languages, the plant and specification are defined respectively:

Lm = Lm,1‖ · · · ‖Lm,n and Kspec = Kspec,1‖ · · · ‖Kspec,p (2.5)

One way in which we will reduce the complexity of supervisor construction will

be to build a series of modular supervisors, one for each specification, rather than a

large monolithic supervisor that addresses all specifications simultaneously. As stated

earlier, modular supervisors will not block one another if they are nonconflicting.

A set of automata H1, H2, . . . , Hn is nonconflicting if the synchronous composition

19

H1‖H2‖ . . . ‖Hn is nonblocking. A set of automata being nonconflicting implies its

corresponding set of marked languages K1, K2, . . . , Kn is also nonconflicting. Non-

conflict of a set of languages is defined as K1∩K2∩. . .∩Kn = K1 ∩K2 ∩ . . . ∩Kn. In

words, if nonconflicting languages share a prefix, they must share a string containing

that prefix.

Another way in which we will reduce complexity is through the use of abstraction.

In particular, we will employ language-based abstractions based on the natural pro-

jection operation defined earlier. We will also employ equivalence-based abstractions

that act to merge equivalent states of an automaton to generate a reduced-order

model.

2.3 Language-Based Abstraction

One type of abstraction that will be employed in this dissertation is the language-

based natural projection operation defined by equation (2.2). In particular, we will

employ the natural projection abstraction as part of the IHSC approach that will be

presented in Chapter 3. The idea with this approach is that if an event is not relevant

to any of the remaining specifications, then we do not necessarily need to keep track

of it and hence it can be considered for erasure from our models. However, it is

possible that erasure of some of these events can hide some aspect of the behavior of

the system that is relevant to the remaining specifications. The natural projection

operation will also be employed in the construction of the interfaces employed in the

MLIBC approach detailed in Chapter 5.

Since the growth of the state space comes as a result of the composition of the

modules, we would like to apply our abstraction incrementally on each module before

a composition is performed. A result that will be helpful to us in this regard is that

the projection distributes across the synchronous composition operation if no events

relevant to more than one component are erased. This fact is expressed by the

following property from [63], where I represents a set of indices:

Proposition 2.3. [63] For i ∈ I let Li ⊆ Σ∗ and L :=
⋂

j∈I Lj. Let Σcom =

∪{Σ(Li) ∩ Σ(Lj) | i, j ∈ I ∧ i 6= j}. Then

Σcom ⊆ Σk ⇒ Pk(L) =
⋂
j∈I

Pk(Lj)

20

A restriction on the projection operation that will be needed later is that the

projection also be an Lm-observer. From [73], a characterization of the Lm-observer

property is given by the following:

Definition 2.4. [73] Let there be a natural projection Pi : Σ∗ → Σ∗
i with languages

Lm ⊆ L ⊆ Σ∗. Then Pi is an Lm-observer for L if:

(∀s ∈ L)(∀t ∈ Σ∗
i)Pi(s)t ∈ Pi(Lm) =⇒ (∃u ∈ Σ∗)

such that su ∈ Lm, and Pi(su) = Pi(s)t ¦

If in the above Lm is replaced by L, then it is said that Pi simply has the observer

property [75]. Intuitively, to have the observer property means that any branching

of the system can be observed in the abstracted version of the system. The idea

behind the observer property is that any control based on the abstracted model has

the same intended effect on the actual plant. Strictly speaking, a projection Pi could

hide a branching and still have the observer property if all paths of the branching

had the same observed future. In this manner, even though there was branching

the control action would be the same no matter which branch was taken. The Lm-

observer property requires that not only does any branching in the marked language

have the same observed future, but also that the futures have the same marking.

It is known that in the worst case the projection of a DES can lead to an ex-

ponential growth of the state space, thereby indicating the time complexity of the

operation is at worst exponential. However, it has been demonstrated in [72] that a

projection with the observer property is guaranteed to result in an abstracted sys-

tem that is no larger than the original system. Furthermore, [72] demonstrates that

under these conditions the complexity of generating the projected model is at worst

polynomial in time. As far as finding a projection that possesses the observer prop-

erty, [15] presents a polynomial time algorithm for finding an extension of the set of

observable events for a projection such that the projection is an observer.

The observer property is maintained across synchronous composition in the same

manner that the projection operation distributes across synchronous composition.

The following result is taken from [54]:

Theorem 2.5. [54] Using the definitions of Proposition 2.3, if the natural projection

Pk is an Lm,j-observer for Lj for each j ∈ I and if Σcom ⊆ Σk, then Pk is an Lm-

observer for L =
⋂

j∈I Lj where Lm :=
⋂

j∈I Lm,j.

21

2.4 State-Based Abstraction

A second approach to abstraction that will be employed in this dissertation reduces

the size of an automaton model by merging equivalent states. Many types of relations

can be employed for identifying equivalent states. Specifically, in the EBCR approach

of Chapter 4 we will generate reduced models that preserve conflict properties, a

notion introduced in [50].

Definition 2.6. [50] Two automata H1 and H2 are said to be conflict equivalent

if for any third automaton T , H1 and T are nonconflicting if and only if H2 and

T are nonconflicting. If the automata H1 and H2 are conflict equivalent we write,

H1 'conf H2. ¦

Note that conflict equivalence respects the property of blocking. Also, two lan-

guages can be defined as conflict equivalent in a similar manner to Definition 2.6.

Using the fact that nonconflict of two automata implies their marked languages are

nonconflicting means that H1 'conf H2 implies Lm(H1) 'conf Lm(H2). The converse,

however, does not hold since the automaton representation of a given language is not

unique. Specifically, two automata can generate the same language and not be con-

flict equivalent. This is demonstrated by the example presented in Fig. 2.1. In the

figure, automata G1 and G2 generate the same language, but G1 conflicts with G3

while G2 does not.

 a

 G : 2

 b c

 a

 G : 3

 b

 a a

 G : 1

 b c

 1

 3

 0

 2

 4

 0

 1

 2 3

 0

 1

 2

Figure 2.1: Illustrative example of nondeterminism

More generally, when nondeterministic automata models are considered, language

equivalence is insufficient for capturing certain system properties. A very strong

equivalence relation for states of automata is bisimulation equivalence [51]. In the

following, we will use the notation q
σ→ q′ to represent that state q′ is reached from

state q by the event σ ∈ Στ .

22

Definition 2.7. Let there be two (possibly nondeterministic) automata

G1 = (Q1, Στ , δ1, q01, Qm1) and G2 = (Q2, Στ , δ2, q02, Qm2). An equivalence relation

∼ on the states of these automata is said to be a bisimulation equivalence if for any

q1 ∈ Q1 and q2 ∈ Q2, q1 ∼ q2 implies that for any σ ∈ Στ :

(i) if q1
σ→ q′1 then ∃q′2 such that q2

σ→ q′2 and q′1 ∼ q′2;

(ii) if q2
σ→ q′2 then ∃q′1 such that q1

σ→ q′1 and q′1 ∼ q′2;

(iii) q1 ∈ Qm1 if and only if q2 ∈ Qm2. ¦

Bisimulation equivalence of two states can be thought of as the two states having

the same future behavior (including the silent event τ). Two automata are said to be

bisimulation equivalent if their initial states are bisimulation equivalent q01 ∼ q02. If

two automata are bisimulation equivalent, most properties of interest are consistent

between the two, including blocking.

Another equivalence relation called weak bisimulation or observation equivalence [51]

exists where states are considered equivalent if they have the same “observed” fu-

tures. That is, their futures must be the same when the silent event τ is projected

away. The notation q
σ⇒ q′ will be employed to denote that there exists a string

s ∈ Σ∗
τ such that q

s→ q′ and Pτ (s) = σ. This concept of observation equivalence is

similar to the notion of the observer property employed in [17] [26] [54] [76]. Refer

to [49] for a more detailed examination of the relationship between conflict equiva-

lence, observation equivalence, and projections with the observer property.

Conflict-equivalent abstraction in general provides a greater reduction in the state

size of a model than either an observation-equivalent abstraction or a projection with

the observer property [49]. A drawback of a conflict-equivalent abstraction is that it

is not as straightforward to implement; it is implemented via heuristics and a select

set of rules [19] [21]. Also, a unique minimal reduction does not exist in general.

CHAPTER 3

Incremental Hierarchical Supervisor Construction

The Incremental Hierarchical Supervisor Construction (IHSC) approach proposed

in this chapter addresses the problem of complexity in supervisory control by adopt-

ing some of the elements of existing hierarchical and modular approaches, while at

the same time avoiding some of their weaknesses. Specifically, it is desired to build

a set of nonblocking modular supervisors while avoiding construction of the unab-

stracted monolithic system, as is required by traditional hierarchical approaches,

and without having to verify that the component supervisors are nonconflicting, as

is required by traditional modular approaches to control.

With the IHSC approach, construction of the unabstracted monolithic system

will be avoided by building the global system incrementally using abstraction. Ver-

ification of nonconflict will be avoided by taking advantage of special cases where

nonconflict occurs by construction. Specifically, languages are nonconflicting if they

are disjoint or if they are subsets of one another. We will define disjoint to mean that

the languages do not share any relevant events. It will be assumed in this work that

the global plant and specification are given modularly as in equation (2.5), and that

the specification languages are prefix-closed. It will be further assumed that each

of the component plants have been organized such that they do not share relevant

events. This situation is referred to as a product system [58]. The automata models

of this chapter will also be deterministic, that is, they do not include the silent event

τ and any given string can only take an automaton to a single state.

For the Flexible Manufacturing System (FMS) introduced in Chapter 1, a possible

partition generated by our proposed approach is shown in Fig. 3.1. The systems in

each of the two inner dashed blocks are supervised by their own supervisor and the

outer dashed blocks represent the systems supervised by the third, fourth, and fifth

23

24

supervisors. Nonconflict of the set of the supervisor languages is guaranteed since

the two modules on the first level of the hierarchy are disjoint, and the behavior

allowed by the supervisors on subsequent levels are each a subset of the behavior

allowed by the supervisors on the previous levels. The problem one might recognize

is that the fifth supervisor acts on the full system, which is counter to the goal of

a modular approach. The solution is to perform an abstraction on the supervised

systems in the inner blocks before moving up a level of the hierarchy to design

the remaining supervisors. If an aspect of a lower level component is not relevant

to any of the remaining modular specifications, then it can be abstracted away.

In this way, abstractions are performed incrementally, rather than on the entire

system at once. Also, a greater level of abstraction can be achieved than if the

abstraction were performed on the monolithic system at the very end. For instance,

even though the highest level supervisor is built with respect to the full plant, a

significant amount of reduction over the abstracted monolithic solution is achievable

in most cases. This is because the last modular supervisor is only trying to guarantee

the additional satisfaction of the last specification, rather than all of the specifications

simultaneously.

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Figure 3.1: IHSC approach to partitioning the FMS example

The outline of the rest of this chapter is as follows. Section 3.1 uses a small

example to demonstrate the IHSC approach to generating modular supervisors. Sec-

tion 3.2 demonstrates that when no abstraction is employed, the resulting supervisors

25

provide maximally permissive control. Section 3.3 shows that when abstraction is

employed, the conjunction of the resulting supervisors will be controllable and non-

blocking, though not optimal. Section 3.4 discusses the strengths and weaknesses

of the approach of this chapter and offers some heuristics for its implementation

through application to two moderately large examples. Section 3.5 summarizes the

contributions of this chapter and outlines some areas for further investigation.

3.1 Supervisor Construction Algorithm

In this section we will outline the procedure by which the set of modular super-

visors is generated through application to a portion of the FMS example introduced

in Chapter 1 and shown here in Fig. 3.2. The plant consists of a Robot, a Con-

veyor (Con3), a Painting Machine (PM), and an Assembly Machine (AM). The two

buffers connecting the various machines, B7 and B8, serve as the specifications for

the system where it is desired that the buffers do not underflow or overflow.

B7

 f r

Robot AM

 Con3

B8

 PM

 s fc

 f
 fc

 s p f p

 s bc

 f
 bc

 s 2

Figure 3.2: Portion of the FMS example

The automata models for the different machines are shown in Fig. 3.3. Note that

each of the starting events, si, are controllable, and each of the finishing events, fi,

are uncontrollable. Also recall that all automata have the same alphabet, though

irrelevant events are not pictured in the figures. The finite state automata models for

the buffers are shown in Fig. 3.4. These buffer models are marked for states for which

the buffer is full because our approach requires that the specification languages be

26

prefix-closed, that is, the supervisor cannot change the marking of the uncontrolled

plant. If it is necessary to ensure that the system reaches a state where the buffers

are empty, another specification could be added.

 I W
 s

 Robot:

 r

 f r
 I W

 s

 PM:

 p

 f p

 Con3:

 I

 s fc
 f fc

F

B
 s bc

 f bc

 AM:

 0 1
 s a

2

3

 s 1

 s 2

 f 2

 f 1

Figure 3.3: Automata models of each machine in FMS portion

 B7:

 E

 f r

 s fc

 s 2

 f bc

 B8:

 E

 f fc

 s p

 s bc

 f p

 F 1

 F
 2

 F 1

 F
 2

Figure 3.4: Automata models of each buffer in FMS portion

We will first present the procedure, and then go through the example. Each series

of languages will be indexed sequentially. This procedure and the proofs to follow

will also assume only one specification is addressed per level of the hierarchy in order

to simplify the notation.

Algorithm 3.1. Incremental Hierarchical Supervisor Construction

Input: Lm,1, . . . , Lm,n, Kspec,1, . . . , Kspec,p

Step 1: Choose an initial specification - Pick a specification Kspec,1 and group it

with all plant submodules {L1, L2, . . . , Li1} with which it shares a relevant event.

We will assume that all plant submodules have already been organized such that

they do not share relevant events with each other; all interaction takes place through

the specifications. Composing system components so that the plant submodules are

27

disjoint from one another can lead to exponential growth, though in most cases on

a much smaller scale than building the monolithic system. Figure 3.5 illustrates

an example relationship between the relevant event sets of the various plant and

specification components in the context of the global event set Σ.

S
S(L) 1

S(L)

S(L)

S(L) 2

3

4

S(K) spec,1
S(K) spec,2

Figure 3.5: Example relationship between relevant event sets

Step 2: Perform abstraction - Perform a projection on the languages generated by

the plant submodules from the previous step. The subscript a is used to represent

these abstracted languages; specifically, let Li,a = P1(Li) and Lm,i,a = P1(Lm,i) where

i ∈ {1, 2, . . . , i1}. Only those events that are not relevant to any specifications on

the current or remaining levels of the hierarchy may be considered for erasure. Also,

the respective Lm,i-observer property must be maintained for each of the subplants

on the current or remaining levels of hierarchy.

On the first level of the hierarchy, P1 is therefore defined to maintain the observer

property with respect to all Lm,i, that is, for all i ∈ {1, . . . , n}. This means that

all events that are relevant to only a single component and that do not violate the

respective observer properties will be erased by P1. In practice, however, in this

first step we will actually only consider those languages with indices in {1, 2, . . . , i1}.
Those events that do not qualify for erasure make up the set Σ1 and the associated

projection is defined P1 : Σ∗ → Σ∗
1. Since we have not examined those languages

outside the set {L1, L2, . . . , Li1}, we do not yet know the exact composition of Σ1.

Step 3: Compose subplant members - Perform a synchronous composition of all ab-

stracted plant submodules on this level of hierarchy.

L′1,a = L1,a‖L2,a‖ · · · ‖Li1,a

28

Since no relevant events are shared among the individual Li, the projection P1

distributes across the synchronous composition by Proposition 2.3. Therefore, L′1,a =

‖i∈I1P1(Li) = P1(‖i∈I1Li), where I1 = {1, 2, . . . , i1}. Furthermore, L′1,a = P1(L
′
1)

where L′1 = ‖i∈I1Li. The projection P1 also possesses the L′m,1-observer property by

Theorem 2.5, where L′m,1 = ‖i∈I1Lm,i. Both L′1 and L′m,1 have alphabets equal to the

global event set Σ and all abstracted languages on this level of the hierarchy have

alphabets equal to Σ1.

Recall, there are some events in Σ1 which are as of yet unknown. These events,

however, are not relevant to L′1, and as such do not cause a violation of the L′m,1-

observer property if they are projected away.

The same projection P1 used in generating the abstracted modular plant L′1,a, is

also used to generate the corresponding abstracted specification, Kspec,1,a = P1(Kspec,1).

In our approach, events are only considered for abstraction if they are not relevant

to the current or remaining specifications, therefore, P1 erases only irrelevant events

from Kspec,1. A representation of the event set Σ1 can be seen in Fig. 3.6.

S
S(L) 1

S(L)

S(L)

S(L) 2

3

4

S(K) spec,1
S(K) spec,2S(K) spec,1(K) (K) S(K) spec,2(K) (K)

S1

Figure 3.6: Example relationship between relevant event sets; Σ1 is the shaded region

Step 4: Build supervisor for abstracted module - Following the traditional tech-

niques for supervisor construction, build a nonblocking supervisor for the abstracted

plant/specification pair. The component allowable language is defined as K ′
1 =

29

Kspec,1 ∩ L′m,1 and its corresponding abstraction is denoted K ′
1,a.

K̂ ′
1,a = sup C(K ′

1,a, L
′
1,a)

where K ′
1,a = Kspec,1,a ∩ L′m,1,a

(3.1)

In the expression for K ′
1,a, the projection distributes across the intersection be-

cause P1 does not erase any relevant events from Kspec,1.

In the worst case, the resulting supervisor can be the empty set. However, this

supervisor is not guaranteed to be optimal because of the abstraction. Therefore,

it is possible that a less restrictive supervisor can be found by erasing fewer events

(by making Σ1 larger). A discussion of how to choose which events to retain can be

found at the end of Section 3.3.

Step 5: Lift abstracted supervisor to the global level - In order to apply a supervisor

generated in Step 4 to the global plant, a default control is implemented that enables

all events that had been previously projected away. This is accomplished by the

inverse projection operation and is represented by P−1
1 (K̂ ′

1,a).

Step 6: Move up to the next level of the hierarchy - In order to address those speci-

fications for which a modular supervisor has not yet been built, we now move up to

the next level of the hierarchy and repeat Steps 1-5. The language representing the

closed-loop behavior of the subsystem from the previous level K̂ ′
1,a becomes a sub-

plant on this level. For example, the allowable language K ′
2 for specification Kspec,2

will be designed with respect to a “plant” L′2, that is composed of K̂ ′
1,a from the

first level as well as the subplants Li that were not employed in the first level and

that share relevant events with Kspec,2. Even though on this level K̂ ′
1,a is treated as a

subplant, we will still refer to it in terms of its original name which is more consistent

with its role on the first level as an allowable language.

Before the synchronous composition is performed, it is again necessary to perform

an abstraction P2 : Σ∗ → Σ∗
2 on each of the submodules such that the observer

properties are maintained with respect to any of the plant components on the current

or remaining levels of hierarchy. In practice, however, we will again only consider

those languages {Li1+1, . . . , Li2} on this level of the hierarchy. Therefore, we end up

30

with a set consisting of abstracted languages Li,a = P2(Li) where i ∈ {i1 +1, . . . , i2}.

L′2,a = P2(K̂ ′
1,a)‖L′′2,a

where L′′2,a = Li1+1,a‖ · · · ‖Li2,a

(3.2)

Building our “plant” in this manner is useful in that it causes the new supervisor

to be nonconflicting with the supervisor from the previous level. Figure 3.7 redraws

Fig. 3.6 in terms of the newly defined L′′j languages.

The subplants {Li1+1, . . . , Li2} that go into generating L′′2,a do not share any rele-

vant events with the specification from the first level. Also, by definition the projec-

tion P2 does not erase events relevant to specifications on the current or higher levels

of the hierarchy. Therefore, the only relevant events P2 erases from {Li1+1, . . . , Li2}
are not relevant to any component specifications. More specifically, the relevant

events P2 erases from {Li1+1, . . . , Li2} are the same events erased by P1, we just did

not know it at the time.

The relevant events erased from the component K̂ ′
1,a, however, can be relevant to

the specification from the first level if they are not relevant to any of the remaining

specifications. Furthermore, events that are relevant only to {L1, L2, . . . , Li1} that

violated the respective observer property on the first level can also be reconsidered

for erasure. As such, each time we move up a level of the hierarchy more abstraction

is possible, that is, Σ2 ⊆ Σ1. Figure 3.7 shows how the set Σ2 fits into the larger

picture.

S

S(L’) = S(L’’) 1 1 S(L’’) 2
(L’) = S(L’’) 1 (L’’) (L’’)

S1

S(K) spec,1

S2

S(K) spec,2

Figure 3.7: Example relationship between relevant event sets; Σ2 is the darkly shaded region

The behavior allowed by the supervisor on this level of the hierarchy is determined

in the same manner as equation (3.1), K̂ ′
2,a = sup C(K ′

2,a, L
′
2,a).

31

The logic outlined above tells us that the set of relevant events erased from

{Li1+1, . . . , Li2} by P2 is disjoint from the set of relevant events erased from P−1
1 (K̂ ′

1,a).

This disjointness will be used in the proofs of Section 3.3 to define the projection

P2 as occurring in two stages. Additionally, since all the components making up L′2
have disjoint sets of relevant events, the projection still distributes by Proposition 2.3.

Therefore, L′2,a = P2(L
′
2) where:

L′2 = K̂ ′
1,a‖L′′2 = P−1

1 (K̂ ′
1,a) ∩ L′′2

where L′′2 = Li1+1‖ · · · ‖Li2

(3.3)

Furthermore, P2 possesses the L′m,2-observer property by Theorem 2.5, where

L′m,2 = P−1
1 (K̂ ′

1,a) ∩ L′′m,2 and L′′m,2 = Lm,i1+1‖ · · · ‖Lm,i2 .

Step 7: Repeat until finished - Continue to repeat this process until there are no more

specifications left.

Output: K̂ ′
1,a, . . . , K̂

′
1,p ¦

Now we illustrate the procedure through a brief FMS example.

Example 3.2.

Step 1: Choose an initial specification - We will choose LB8 = L(B8) to be our

first specification where the subplants that it shares relevant events with are LC3 =

L(Con3) and LPM = L(PM). Note, the order in which we address specifications

and the controlled behavior that results is not unique.

Step 2: Perform abstraction - All events relevant to the plant submodules comprising

the first level of the hierarchy, Con3 and PM, are also relevant to the current or

remaining specifications, thus LC3,a = P1(LC3) and LPM,a = P1(LPM) where P1

erases only irrelevant events from the languages. In terms of the automata, this

means only events that are self-looped at every state of Con3 and PM are projected

away. In practice, irrelevant events do not need to be projected or added. For the

purposes of the proofs to follow, however, it is useful to have sets of languages over

the same alphabet.

Step 3: Compose subplant members - Composing the individual subplants gives us

the plant and specification for our first module, L′1,a = LC3,a‖LPM,a and Kspec,1,a =

P1(LB8) respectively.

32

Step 4: Build supervisor for abstracted module - The abstracted allowable language

for the first specification is K ′
1,a = LB8,a ∩ Lm,C3,a ∩ Lm,PM,a. It turns out K ′

1,a is

not Σu-controllable and hence the supremal controllable sublanguage must be taken.

The resulting language is K̂ ′
1,a = sup C(K ′

1,a, L
′
1,a).

Step 5: Lift abstracted supervisor to the global level - This is accomplished by the

inverse projection operation. An automaton which generates K̂ ′
1,a and represents

the first modular supervisor for our example is shown in Fig. 3.8. Since we do not

picture irrelevant events, the events added by the inverse projection are not shown

in Fig. 3.8.

 0

 s fc
1 3

 s p

5

 f
 fc

 f p
 s bc

 f
 bc

2

4

Figure 3.8: Automaton representing the supervisor which marks the language K̂ ′
1,a

Step 6: Move up to the next level of the hierarchy - For our example, we move up

a level of hierarchy to build a supervisor for the second specification LB7 = L(B7).

Our new grouping consists of the remaining machines, LR = L(Robot) and LAM =

L(AM), as well as the supervised language from the first level K̂ ′
1,a. At this point,

those events not relevant to the remaining specification are sr, sa, s1, f1, f2, sp, fp,

ffc, and sbc. It is interesting to note that the last four events in the above list were

relevant to the first specification and as such could not be considered for erasure on

the first level of the hierarchy. We must first, however, check to see if abstraction of

any of these events will cause a violation of the individual Lm,i-observer properties

that we need to guarantee nonblocking. Examination of Fig. 3.3 and Fig. 3.8 will

help us to do this.

Specifically, abstraction of the event sr causes a problem because it represents

a transition from a marked state to an unmarked state without an unobservable

string of transitions back to a marked state. In other words, if sr is unobserv-

able then P2(sr) = ε is an element of P2(Lm,R), but there is no string u such

that sru ∈ Lm,R and P2(sru) = ε. Applying similar logic, event sbc cannot be

abstracted either. Therefore, Σ2 = {sfc, fbc, sbc, sr, fr, s2}. We also now know,

Σ1 = Σ2 ∪ {sp, fp, ffc}. The resulting reduction of machine AM has a single state

33

and generates the language LAM,a = P2(LAM). An automaton which generates the

reduction P2(K̂
′
1,a) has 3 states and 3 transitions. The Robot subplant and spec-

ification B7 are not reduced by the projection P2. That is, LR,a = P2(LR) and

LB7,a = P2(LB7) where P2 erases only irrelevant events.

Therefore, the plant for the second specification is L′2,a = P2(K̂ ′
1,a)∩LR,a∩LAM,a.

Following Step 4, the abstracted allowable language is then K ′
2,a = LB7,a ∩ L′m,2,a.

This language again fails to be Σu-controllable. Therefore taking the supremal con-

trollable sublanguage, the new allowable language for the second specification is

K̂ ′
2,a = sup C(K ′

2,a, L
′
2,a). A minimal automaton generator for this language has 8

states and 8 transitions. The final step again is to lift this abstraction up to the

global level. Specifically, the events sa, s1, f1, f2, sp, fp, and ffc must be added.

Step 7: Repeat until finished - Since there are no specifications left, we are done. ¦

For the purposes of comparison, the monolithic solution of our example generates

a supervisor whose automaton representation consists of 68 states and 157 transi-

tions, while the two modular supervisors are significantly smaller. Specifically, a

minimal automaton which generates K̂ ′
1,a has 6 states and 6 transitions and a mini-

mal automaton which generates K̂ ′
2,a has 8 states and 8 transitions (irrelevant events

are not considered when counting transitions). Even though the highest level su-

pervisor is built in essence with respect to the full plant, it will almost always be

significantly smaller than the monolithic supervisor since it is built to address only

those strings relevant to the last specification, rather than the conjunction of all the

specifications. It will be shown in Section 3.4 the improvement in complexity can

be more dramatic in systems larger than the simple one used here for illustrative

purposes.

It is interesting to note that if the modular supervisor for B7 had been built first

and the supervisor for B8 been built second, the modular supervisors would have

had 8 and 10 states and 11 and 13 transitions respectively. Some guidelines for how

to best choose the ordering in which the specifications are addressed will be discussed

in Section 3.4.

In this case, it turns out that the behavior allowed by the two modular supervisors

is identical to the behavior allowed by the single monolithic supervisor and hence is

optimal. This will not be the case in general since each of the modular supervisors

were designed with respect to an abstracted plant. Some discussion of optimality

34

can be found at the end of Section 3.3.

The procedure presented above assumed one specification is addressed per level

of hierarchy. This approach, however, is still valid if multiple specifications are

addressed per level, though it will be demonstrated later that in most cases it is

computationally advantageous to address only a single specification. If multiple

specifications are addressed within a level, then they must be chosen to address a

disjoint set of subplants. The disjointness is needed to provide nonconflict.

3.2 Optimal Control Without Abstraction

We will now consider the modular supervisors constructed by the algorithm of

the previous section without the use of any abstraction. Specifically, it will be shown

that the conjunction of the modular supervisors will provide the same behavior as

the monolithic supervisor. This implies that not only will the conjunction of modular

supervisors satisfy the given specifications in a nonblocking manner, but further, that

the provided supervision will be optimal in the sense of being least restrictive. In the

next section these arguments will be reconsidered with the addition of abstraction.

Before we get to the main result of this section, we must present some propositions.

The first proposition is a result from [2] which is useful in showing that if an allowable

language is Σu-controllable with respect to a subset of plant subsystems, it is Σu-

controllable with respect to the full plant.

Proposition 3.3. [2] Let K, L ⊆ L′ ⊆ Σ∗ be languages. Also let Σu ⊆ Σ. If K is

Σu-controllable with respect to L′, then K is Σu-controllable with respect to L.

This next proposition shows that the intersection of two nonconflicting Σu-controllable

languages is itself Σu-controllable. The result is in general well-known and can be

found in [57].

Proposition 3.4. [57] Let K1, K2, L ⊆ Σ∗ be languages and let K = K1∩K2. Also

let Σu ⊆ Σ. If K1 and K2 are nonconflicting and Σu-controllable with respect to L,

then K is Σu-controllable with respect to L.

Since we are building each successive level of allowable languages with respect to

an uncontrolled plant intersected with a controlled language from the previous level,

this next proposition is used to show controllability of the intersection of languages

35

from successive levels of our hierarchy. The proof of this result follows from logic

presented in [2].

Proposition 3.5. Let K1, K2, L ⊆ Σ∗ be languages and let K = K1 ∩K2. Also let

Σu ⊆ Σ and K1 and K2 be nonconflicting. If K2 is Σu-controllable with respect to

K1 ∩ L, and K1 is Σu-controllable with respect to L, then K is Σu-controllable with

respect to L.

Proof. See proof in Appendix.

This next proposition is used to demonstrate Lm-closure of the intersection of

languages from successive levels of our hierarchy.

Proposition 3.6. Let K1, K2, Lm,1, and Lm,2 ⊆ Σ∗ be languages and let K2 ⊆ K1

and Lm = Lm,1∩Lm,2. If K2 is closed with respect to K1∩Lm,2 and K1 is Lm,1-closed,

then K2 is Lm-closed.

Proof.

K2 = K2 ∩ (K1 ∩ Lm,2)

= K2 ∩ ((K1 ∩ Lm,1) ∩ Lm,2)

= K2 ∩ (Lm,1 ∩ Lm,2) = K2 ∩ Lm ¦

This next proposition is a result from [2] that will prove useful for showing opti-

mality for our incremental approach to supervisor construction when no abstraction

is employed. In the following, the requirement that (Σ(K)∪Σ(L1))∩Σ(L2)∩Σu = ∅
means that neither K nor L1 can share any relevant uncontrollable events with L2.

Proposition 3.7. [2] Let K, L1, L2 ⊆ Σ∗ be languages and let L = L1 ∩ L2.

Furthermore, let:

K̂ = sup C(K, L)

K̂1 = sup C(K, L1)

If (Σ(K) ∪ Σ(L1)) ∩ Σ(L2) ∩ Σu = ∅, then K̂1 ∩ L = K̂ ∩ L.

It is also desirable to extend the result of Proposition 3.7 to find an expression

in terms of the nonprefix-closed languages, K̂ and K̂1. This is accomplished in the

following corollary.

36

Corollary 3.8. Under the conditions of Proposition 3.7 with the additional require-

ments that K ⊆ Lm,1 and K be Lm,1-closed, K̂1 ∩ Lm,2 = K̂ ∩ Lm,2 .

Proof. The result of Proposition 3.7 is K̂1 ∩L = K̂ ∩L. Intersecting both sides with

Lm gives the result K̂1 ∩ Lm = K̂ ∩ Lm where Lm = Lm,1 ∩ Lm,2. Since K ⊆ Lm,1,

the sup C operation preserves Lm,1-closure. Therefore, K̂ and K̂1 are Lm,1-closed and

hence K̂1 ∩ Lm,2 = K̂ ∩ Lm,2.

With all of these propositions in place, we can now generate a lemma that will

allow us to show the main result of this section. Specifically, the lemma will allow

us to show that an incrementally built language can be supremal. The setup for

Lemma 3.9 is that there are two specifications that can interact through a common

subplant. Instead of building a monolithic supervisor directly, we build a modular

supervisor for one specification then build the second modular supervisor with respect

to a “plant” made up of the portion of the monolithic plant not addressed yet and

the modular supervised language just constructed. This lemma addresses the step

of our approach where we move up a level of the hierarchy.

Lemma 3.9. Let K1, K2, L1, L2 ⊆ Σ∗ be languages and let K = K1 ∩ K2 and

L = L1 ∩ L2. Let each Ki ⊆ Lm,i. Also let K1 be Lm,1-closed and:

K̂1 = sup C(K1, L1)

K ′
2 = K̂1 ∩K2

L′m,2 = K̂1 ∩ Lm,2

L′2 = L′m,2

If (Σ(K1) ∪ Σ(L1)) ∩ Σ(L2) = ∅ then L′2 = K̂1 ∩ L2 and:

sup C(K ′
2, L

′
2) = sup C(K̂1 ∩K2, K̂1 ∩ L2) = sup C(K1 ∩K2, L1 ∩ L2) = sup C(K, L)

Proof. (⊆) First we will show sup C(K ′
2, L

′
2) ⊆ sup C(K,L).

Note, sup C(K ′
2, L

′
2) ⊆ K ′

2 ⊆ K̂1. This containment provides that sup C(K ′
2, L

′
2)

and K̂1 are nonconflicting. Furthermore, by construction sup C(K ′
2, L

′
2) is control-

lable with respect to L′2. L′2 = L′m,2 = K̂1 ∩ L2 since K̂1 and Lm,2 are nonconflicting

due to the given property that (Σ(K1) ∪ Σ(L1)) ∩ Σ(L2) = ∅. Therefore, Propo-

sition 3.3 gives us that sup C(K ′
2, L

′
2) is controllable with respect to K̂1 ∩ L. By

construction, K̂1 is controllable with respect to L1. Therefore, K̂1 is controllable

37

with respect to L by Proposition 3.3 also. These results along with Proposition 3.5

then provide that K̂1 ∩ sup C(K ′
2, L

′
2) = sup C(K ′

2, L
′
2) is controllable with respect to

L. Furthermore, sup C(K ′
2, L

′
2) ⊆ K ′

2 ⊆ K. Therefore, sup C(K ′
2, L

′
2) ∈ C(K, L) and

hence sup C(K ′
2, L

′
2) ⊆ sup C(K, L).

(⊇) Now we need to show that sup C(K ′
2, L

′
2) ⊇ sup C(K, L).

Since the sup C operator is monotonic, K ′
2 ⊆ K̂1 implies that sup C(K ′

2, L
′
2) ⊆

sup C(K̂1, L
′
2). Furthermore, K ′

2 = K2 ∩ K̂1 = K2 ∩ L′m,2 since it is given that

K2 ⊆ Lm,2. Therefore, sup C(K ′
2, L

′
2) = sup C(K2 ∩ L′m,2, L

′
2) and:

sup C(K ′
2, L

′
2) = sup C(K̂1, L

′
2) ∩ sup C(K2 ∩ L′m,2, L

′
2) (3.4)

Since K̂1 is controllable with respect to L1 by construction and L′2 ⊆ K1 ⊆ Lm,1 =

L1, Proposition 3.3 gives us that K̂1 is controllable with respect to L′2 also. Therefore,

sup C(K̂1, L
′
2) = K̂1. This result along with the fact that sup C(K2∩L′m,2, L

′
2) ⊆ K2 ⊆

Lm,2, means that the expression in equation (3.4) is equivalent to:

sup C(K ′
2, L

′
2) = K̂1 ∩ sup C(K2 ∩ L′m,2, L

′
2) ∩ Lm,2 (3.5)

The fact that K ⊆ K1 implies that sup C(K, L) ⊆ sup C(K1, L). Furthermore,

sup C(K, L) ⊆ sup C(K1, L) ∩ Lm,2 since sup C(K,L) ⊆ K ⊆ K2 ⊆ Lm,2. Apply-

ing Corollary 3.8, sup C(K1, L)∩Lm,2 = sup C(K1, L1)∩Lm,2 since (Σ(K1)∪Σ(L1)∩
Σ(L2) ∩ Σu = ∅ and K1 ⊆ Lm,1 is Lm,1-closed. Therefore:

sup C(K,L) ⊆ K̂1 ∩ Lm,2 = L′m,2 (3.6)

The fact that sup C(K,L) ⊆ K ⊆ K2, along with equation (3.6), gives the result

that sup C(K,L) ⊆ K2∩L′m,2. This implies that sup C(sup C(K, L), L′2) ⊆ sup C(K2∩
L′m,2, L

′
2). Since sup C(K,L) is controllable with respect to L by construction and

L′2 = K̂1∩L2 ⊆ L1∩L2 = L, Proposition 3.3 provides that sup C(K,L) is controllable

with respect to L′2 also. Therefore, sup C(sup C(K, L), L′2) = sup C(K, L), which

implies:

sup C(K,L) ⊆ sup C(K2 ∩ L′m,2, L
′
2) (3.7)

Combining equations (3.6) and (3.7):

sup C(K,L) ⊆ K̂1 ∩ sup C(K2 ∩ L′m,2, L
′
2) ∩ Lm,2

38

And finally noting equation (3.5) gives us our desired result:

sup C(K, L) ⊆ sup C(K ′
2, L

′
2)

The languages employed in the following theorem use the same notation intro-

duced in Section 3.1. In this case, however, the languages are not equivalent to

their previously introduced counterparts because in this section no abstraction is

employed. The only exceptions are the languages L′′j and L′′m,j because they were not

built with abstraction in Section 3.1 either. Also, the proof of this theorem assumes

that only a single specification is addressed per level of hierarchy in order to reduce

the complexity of the notation. The results of this and subsequent proofs, however,

still hold if multiple specifications are addressed on a given level of the hierarchy.

Theorem 3.10. The set of modular supervisors constructed by the procedure of Sec-

tion 3.1 without any abstraction will provide the same behavior as the monolithic

supervisor:
p⋂

j=1

K̂ ′
j =

p⋂
j=1

sup C(K ′
j, L

′
j) = sup C(K, L) = K̂ (3.8)

Proof.

• Throughout this theorem, the following hold:

K ′
j = Kspec,j ∩ L′m,j

K ′′
j = Kspec,j ∩ L′′m,j

• Recalling the modular definitions of equation (2.5), where n corresponds to the total

number of subplants and p corresponds to the number of component specifications:

L = L1 ∩ · · · ∩ Ln =

p⋂
j=1

L′′j

K = Kspec ∩ Lm =

p⋂
j=1

K ′′
j

• Now we will show by induction that K̂ ′
j = sup C(

⋂j
i=1 K ′′

i ,
⋂j

i=1 L′′i) and that K̂ ′
j is

⋂j
i=1 L′′m,i-closed.

39

• Beginning on the first level of the hierarchy, the allowable language is built with

respect to a subset of the full plant without any control included, that is, L′m,1 = L′′m,1.

Therefore, on the first level:

K̂ ′
1 = sup C(K ′′

1 , L′′1) (3.9)

• Hence K̂ ′
1 is optimal with respect to its portion of the uncontrolled plant L′′1. Also

note, since K ′′
1 is by construction L′′m,1-closed, K̂ ′

1 is L′′m,1-closed too since the sup C
operation preserves closure.

• Moving up to successive levels of the hierarchy, each new allowable language is

constructed in a similar manner:

K̂ ′
j = sup C(K ′

j, L
′
j) (3.10)

except now, L′m,j consists of a plant subsystem as well as the controlled subplant

from the first level.

L′m,j = K̂ ′
j−1 ∩ L′′m,j (3.11)

• Building the allowable language with respect to an L′m,j constructed in this manner

will prove useful since it results in each new allowable language K̂ ′
j being a subset of

the allowable language from the previous level.

K̂ ′
j = sup C(K ′

j, L
′
j)

⊆ K ′
j = Kspec,j ∩ L′m,j

⊆ L′m,j = K̂ ′
j−1 ∩ L′′m,j ⊆ K̂ ′

j−1

This logic can be repeated to show that:

K̂ ′
j ⊆

j−1⋂
i=1

K̂ ′
i (3.12)

• Based on the induction hypothesis, we will assume that:

K̂ ′
j−1 = sup C(

j−1⋂
i=1

K ′′
i ,

j−1⋂
i=1

L′′i) (3.13)

We will also assume that K̂ ′
j−1 is closed with respect to

⋂j−1
i=1 L′′m,i.

• The language L′′m,j does not share any relevant events with any of the K̂ ′
i and L′′i

from the previous levels. Also, equation (3.12) and the fact that K̂ ′
i ⊆ L′′m,i provide

40

that K̂ ′
j−1 ⊆

⋂j−1
i=1 L′′m,i ⊆

⋂j−1
i=1 L′′i . If we additionally consider equation (3.13) and

the fact that K̂ ′
j−1 is

⋂j−1
i=1 L′′m,i-closed, Lemma 3.9 can be applied to show:

K̂ ′
j = sup C(K ′

j, L
′
j)

= sup C(K̂ ′
j−1 ∩K ′′

j , K̂ ′
j−1 ∩ L′′j)

= sup C(

j−1⋂
i=1

K ′′
i ∩K ′′

j ,

j−1⋂
i=1

L′′i ∩ L′′j) (3.14)

• Noting equation (3.12), K̂ ′
1∩. . .∩K̂ ′

j−1∩K̂ ′
j = K̂ ′

j. Therefore, equation (3.14) shows

that the conjunction of modular supervisors up to a given point is supremal with

respect to the associated subsystem. On this level, that means
⋂j

i=1 K̂ ′
i is supremal

with respect to
⋂j

i=1 L′′i .

• By construction, K̂ ′
j is L′m,j-closed. Examination of equation (3.11) and application

of the logic of equation (3.12), therefore, shows that K̂ ′
j is closed with respect to

⋂j−1
i=1 K̂ ′

i ∩ L′′m,j. Since
⋂j−1

i=1 K̂ ′
i is also

⋂j−1
i=1 L′′m,i-closed by the induction hypothesis,

Proposition 3.6 provides that K̂ ′
j is

⋂j
i=1 L′′m,i-closed.

• The above logic is repeated until all modular supervisors have been addressed.

Specifically, Lemma 3.9 is successively applied to show the optimality of a supervisor

when moving up a level of the hierarchy. Every time this lemma is applied, optimality

with respect to a larger portion of the system is shown. The end result is that the

conjunction of modular supervisors provides the same behavior as the monolithic

supervisor:
p⋂

j=1

K̂j = sup C(

p⋂
j=1

K ′′
j ,

p⋂
j=1

L′′j) = sup C(K,L) = K̂

The above result states that the conjunction of the modular supervisors built

without abstraction will provide the same behavior as the monolithic supervisor.

Equivalence to the monolithic solution implies the conjunction of these modular su-

pervisors provides the optimal solution in the sense of being least restrictive. It

further implies that the conjunction of modular supervisors meets the given specifi-

cations in a nonblocking manner since the monolithic supervisor does. The problem

with this result is that if no abstraction is employed, the procedure essentially re-

quires that the full monolithic system be built. In the following we generate results

with abstraction included.

41

3.3 Safe, Nonblocking Control With Abstraction

The motivation for applying abstraction is that by performing analysis and su-

pervisor design on a simplified version of a system, complexity is decreased and

understandability is improved. In the context of our approach, we would like to ab-

stract away those elements of our system that are not relevant to those specifications

being addressed at the current or higher levels of our hierarchy. For our abstraction,

we will simply apply the natural projection operation defined earlier by equation

(2.2), where it is further required that each projection Pj possesses the L′m,j-observer

property. The L′m,j-observer property is needed for maintenance of nonblocking, but

does not provide for optimality.

In order for the supervisor corresponding to the abstracted language to be ap-

plied to the global plant, it is necessary to incorporate a default control that perma-

nently enables all events that had been previously hidden. From an implementation

standpoint, this can be achieved by the inverse projection, K̃j = P−1
j (K̂j,a). In the

definitions given below, the restriction to K̃j−1 ∩ L′′j is added to reflect the actual

behaviors of the system that can occur and to assist with the proofs that are to

follow. In practice, however, these restrictions do not have to be implemented be-

cause strings outside the uncontrolled behavior of the plant and outside the behavior

allowed by other modular supervisors will not occur anyway.

K̃j = P−1
j (K̂ ′

j,a) ∩ K̃j−1 ∩ L′′j

K̃m,j = P−1
j (K̂ ′

j,a) ∩ K̃m,j−1 ∩ L′′m,j (3.15)

In the proofs that follow, it is necessary to show that if an abstracted admissible

language K̂j,a is Σu,j-controllable with respect to Pj(L
′
j), then the lifted version

K̃j is Σu-controllable with respect to the unabstracted language L′j. Note, Σu,j =

Σu ∩ Σj. Furthermore, we need to show that if the supervisor for the abstracted

system provides nonblocking control, then the lifted supervisor provides nonblocking

control of the actual system.

From examination of the definition of the lifted languages in equation (3.15), one

can see that they are contained in one another, thereby maintaining nonconflict by

construction. Furthermore, it can be shown K̃m,j = K̃j ∩ Lm.

42

In demonstrating these results, we will find the following properties of the natural

and inverse projections helpful [8]:

Property 1 P (tu) = P (t)P (u).

Property 2 P (L) = P (L).

Property 3 P−1(tu) = P−1(t)P−1(u).

Property 4 P−1(L) = P−1(L).

Property 5 L ⊆ P−1(P (L)).

Property 6 If L1 ⊆ L2, then P (L1) ⊆ P (L2) and P−1(L1) ⊆ P−1(L2)

Property 7 Let L1, L2 ⊆ Σ∗
0, P0 : Σ∗ → Σ∗

0. Then, P−1
0 (L1) ∩ P−1

0 (L2) =

P−1
0 (L1 ∩ L2).

Property 8 For alphabets Σ0 ⊆ Σ1 ∪ Σ2, let L1 ⊆ Σ∗
1, L2 ⊆ Σ∗

2 and

P0 : (Σ1 ∪ Σ2) → Σ∗
0. Then, P0(L1‖L2) ⊆ P0(L1)‖P0(L2) and the equality

holds provided that Σ1 ∩ Σ2 ⊆ Σ0 (Proposition 2.3).

We will also need some additional propositions. The following proposition will

be used in showing the maintenance of controllability properties between abstracted

and lifted languages. It is proven using logic taken from [45].

Proposition 3.11. Let P : Σ∗ → Σ∗
a be a natural projection and let L ⊆ Σ∗ and

Ka ⊆ Σ∗
a be languages. Also let K̃m = P−1(Ka) ∩ L, Σu ⊆ Σ and Σu,a = Σu ∩Σa. If

Ka is Σu,a-controllable with respect to P (L), then K̃m is Σu-controllable with respect

to L.

Proof. See proof in Appendix.

The proposition given below is employed to show nonblocking of the abstracted

system implies nonblocking of the lifted system. The result follows closely from logic

in [75].

Proposition 3.12. Let P : Σ∗ → Σ∗
a be a natural projection and let Lm = L ⊆ Σ∗

and Ka ⊆ Σ∗
a be languages. Also let K̃ = P−1(Ka) ∩ L and K̃m = P−1(Ka) ∩ Lm. If

the projection P possesses the Lm-observer property and Ka ⊆ P (Lm), then K̃m = K̃.

Proof. See proof in Appendix.

This next proposition demonstrates that if the marking of an abstracted language

43

is consistent with the marking of P (Lm), then the marking of the lifted language will

be consistent with the marking of Lm.

Proposition 3.13. Let P : Σ∗ → Σ∗
a be a natural projection and let Lm = L ⊆ Σ∗

and Ka ⊆ Σ∗
a be languages. If Ka is P (Lm)-closed, then P−1(Ka)∩Lm = P−1(Ka)∩

Lm.

Proof.

Ka ∩ P (Lm) = Ka

P−1(Ka ∩ P (Lm)) = P−1(Ka)

P−1(Ka) ∩ P−1(P (Lm)) = P−1(Ka)

P−1(Ka) ∩ P−1(P (Lm)) ∩ Lm = P−1(Ka) ∩ Lm

P−1(Ka) ∩ Lm = P−1(Ka) ∩ Lm

This final proposition is quite important and will be used to show that languages

from successive levels of our hierarchy are nonconflicting.

Proposition 3.14. Let P : Σ∗ → Σ∗
a be a natural projection and let K1, K2 ⊆ Σ∗

be languages. Also let Σ(K2) ⊆ Σa. If P (K2) ⊆ P (K1) and P has the K1-observer

property, then K1 and K2 are nonconflicting.

Proof. Let there be a string s ∈ Σ∗ such that s ∈ K1 ∩ K2. We must then show

that K1 and K2 share a completion of this string. Since Σ(K2) ⊆ Σa, ∃t ∈ Σ∗
a

such that st ∈ K2. Also since Σ(K2) ⊆ Σa, P (s)t ∈ P (K2) ⊆ P (K1). By the K1-

observer property, ∃u such that su ∈ K1 and P (su) = P (s)t. It then follows that

su ∈ P−1(P (su)) ⊆ P−1(P (K2)) = K2 since Σ(K2) ⊆ Σa. Therefore, K1 and K2 are

nonconflicting.

The propositions provided above will be used to prove the main results of this

chapter. Before we demonstrate these results, however, we need to examine the

exact manner in which our languages are projected and then lifted back to the global

alphabet.

In the procedure of Section 3.1, the projection operation P2 : Σ∗ → Σ∗
2 was

defined. This projection was constructed so that it maintained the observer property

44

with respect to each of the elements that went into constructing L′2, specifically, with

respect to K̂ ′
1,a as well as each of the elements of {Li1+1, . . . , Li2}. Since each of these

component languages have disjoint sets of relevant events, P2 has the L′m,2-observer

property by Theorem 2.5. It was also stated that P2 does not erase any relevant

events from the language L′′2 = Li1+1‖ . . . ‖Li2 that would not also be erased by the

projection P1 : Σ∗ → Σ∗
1. Furthermore, the events erased by P2 which are relevant

to K̂ ′
1,a are disjoint from those which are relevant to L′′2.

These facts are true for the projection Pj : Σ∗ → Σ∗
j in general. As such, in the

proofs of the following lemmas it will be assumed that each projection Pj will be

performed in two stages. That is, the projection P1 will be performed first erasing

the relevant events of L′′j followed by a projection P ′
j = Σ∗

1 → Σ∗
j which erases the

events relevant to K̂ ′
j,a. It is well known that the natural projection satisfies a chain

rule property such that Pj = P ′
j ◦ P1. The proofs to follow will also implement

the inverse projection P−1
j using the same two stages. Specifically, P ′−1

j will be

applied throughout the proofs to generate an intermediate lifted language K̃j,a. The

remaining events will be added separately via the P−1
1 operation at the end leading

to K̃j.

By Proposition 2.3, projection distributes across synchronous composition if no

shared relevant events are abstracted away. Since the L′′m,j do not share any rel-

evant events, we can, therefore, define L̃a = P1(L) and L̃m,a = P1(Lm). Two

other languages projected to the alphabet Σ1 are defined L̃′m,j,a = P1(L
′
m,j) and

L̃′′m,j,a = P1(L
′′
m,j). These newly defined languages can also be interpreted as versions

of the abstracted languages with alphabets equal to Σj lifted to the event set Σ1,

rather than all the way to the global alphabet Σ. Figure 3.9 helps to illustrate the

relationship between these newly defined languages.

In a similar manner to the expressions of equation (3.15), restrictions have been

added to the following definitions of K̃j,a in order to assist with the proofs that are

to follow.

K̃j,a = P ′−1
j (K̂ ′

j,a) ∩ K̃j−1,a ∩ L̃′′j,a

K̃m,j,a = P ′−1
j (K̂ ′

j,a) ∩ K̃m,j−1,a ∩ L̃′′m,j,a (3.16)

Iteratively expanding the terms for the lower level supervisors, K̃j−1,a, leads to the

45

S

S

S

S
j

j-1 K’ j-1,a
^

 P (K’)j-1,a
^

j-1

-1

 P
j-1

-1

 L’’ m,j

 L’’ m,j,a

 L’ m,j

 L’ m,j,a

1

=

 P
j

 P (P (K’))j-1,a
^

j-1

-1

j

=

 L’’ m,j,a L’ m,j,a
=

 P’ (K’)j-1,a
^

j-1

-1 ~ ~

 P
j

 P
j

 P
1 P

1

 P’
j

 P’
j

 P
1

-1

 P’
j-1

-1

 P
j

Figure 3.9: Diagram representing the relationship between various languages and alphabets

following:

K̃j,a =

j⋂
i=1

P ′−1
i (K̂ ′

i,a) ∩
j⋂

i=1

L̃′′i,a

K̃m,j,a =

j⋂
i=1

P ′−1
i (K̂ ′

i,a) ∩
j⋂

i=1

L̃′′m,i,a (3.17)

Also note the following definitions of L̃′j,a and L̃′m,j,a that also correspond to their

unabstracted counterparts.

L̃′j,a = P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′j,a

L̃′m,j,a = P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′m,j,a

It then follows that L̃′m,j,a = L̃′j,a since P ′−1
1 (K̂ ′

j−1,a) and L̃′′m,j,a are nonconflicting

since they do not share any relevant events. Additionally, since each K ′
j,a is by

construction L′m,j,a-closed, where L′m,j,a = P ′
j(L̃

′
m,j,a), each K̂ ′

j,a is also P ′
j(L̃

′
m,j,a)-

closed since the sup C operation will maintain the closure. Therefore, Proposition 3.13

can be applied iteratively to the above expression for K̃m,j,a to generate the following:

K̃m,j,a = P ′−1
j (K̂ ′

j,a) ∩ K̃m,j−1,a ∩ L̃′′m,j,a (3.18)

Now noting that K̃j−1,a ⊆ P ′−1
j−1(K̂

′
j−1,a) and K̃m,j−1,a ⊆ P ′−1

j−1(K̂
′
j−1,a), equation

46

(3.16) can be expressed:

K̃j,a = P ′−1
j (K̂ ′

j,a) ∩ K̃j−1,a ∩ P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′j,a

= P ′−1
j (K̂ ′

j,a) ∩ K̃j−1,a ∩ L̃′j,a

K̃m,j,a = P ′−1
j (K̂ ′

j,a) ∩ K̃m,j−1,a ∩ P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′m,j,a

= P ′−1
j (K̂ ′

j,a) ∩ K̃m,j−1,a ∩ L̃′m,j,a (3.19)

The expressions of equation (3.19) will prove useful in the following lemmas.

By definition, P1 has the L′′m,j-observer property for all j ∈ {1, . . . , m}. It then

follows that since P1 does not erase any shared relevant events, it will also possess

the Lm-observer property by Theorem 2.5. Furthermore, since P1 erases only irrel-

evant events from P−1
j−1(K̂

′
j−1,a), P ′

j will have the observer property with respect to

P ′−1
j−1(K̂

′
j−1,a). Since in addition P ′

j erases only irrelevant events from L̃′′m,j,a, it also

possesses the L̃′m,j,a-observer property again by Theorem 2.5.

We will now present the first main result of the chapter, Lemma 3.15. This

lemma shows that the behavior allowed by the conjunction of modular supervisors

constructed by the procedure of Section 3.1 is nonblocking. This will be proven by

induction, where the induction step shows that the intersection of a sequential set

of languages that represent the supervised behavior of each module is nonconflicting

with the supervised behavior from the next level of the hierarchy.

Lemma 3.15. The conjunction of modular supervisors constructed by the procedure

of Section 3.1 is nonblocking if such a set of nonempty modular supervisors exists,

that is

K̃m,1 ∩ K̃m,2 ∩ . . . ∩ K̃m,p = K̃1 ∩ K̃2 ∩ . . . ∩ K̃p

Proof.

• The first step of this proof is to show that
⋂

K̃m,j,a =
⋂

K̃j,a.

• On the first level of the hierarchy, L̃′m,1,a = L̃′′m,1,a. Furthermore, since P1 is the

projection employed on the first level, K̂ ′
1,a ⊆ L′′m,1,a = L̃′′m,1,a. Therefore, K̂ ′

1,a =

P ′−1
1 (K̂ ′

1,a) and L̃′′m,1,a are nonconflicting and K̃m,1,a = K̃1,a as built in equations

(3.16) and (3.18):

P ′−1
1 (K̂ ′

1,a) ∩ L̃′′m,1,a = P ′−1
1 (K̂ ′

1,a) ∩ L̃′′1,a

• Moving up to successive levels of the hierarchy, each L̃′m,j,a now consists of a

plant subsystem as well as the controlled subplant from the previous level. Since

47

L̃′m,j,a = L̃′j,a and K̂ ′
j,a ⊆ L′m,j,a = P ′

j(L̃
′
m,j,a), we can apply Proposition 4.7.

P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a = P ′−1
j (K̂ ′

j,a) ∩ L̃′j,a

• Intersecting both sides of the above with K̃m,j−1,a = K̃j−1,a gives us:

P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a ∩ K̃m,j−1,a = P ′−1
j (K̂ ′

j,a) ∩ L̃′j,a ∩ K̃j−1,a (3.20)

• It is now necessary to show that P ′−1
j (K̂ ′

j,a)∩L̃′m,j,a and K̃m,j−1,a are nonconflicting.

• First note the following relation which comes from examination of expressions that

are analogous to equations (3.1) and (3.3).

K̂ ′
j,a ⊆ K ′

j,a ⊆ L′m,j,a = P ′
j(L̃

′
m,j,a) ⊆ P ′

j(L̃
′′
m,j,a)

• Also recalling that each P ′
j erases only irrelevant events from L̃′′m,j,a, the following

result holds:

P ′−1
j (K̂ ′

j,a) ⊆ P ′−1
j (P ′

j(L̃
′′
m,j,a)) = L̃′′m,j,a (3.21)

• taking the prefix-closure of both sides of the above provides the following additional

result,

P ′−1
j (K̂ ′

j,a) ⊆ L̃′′m,j,a = L̃′′j,a (3.22)

• Since K ′
j,a is by construction P ′

j(L̃
′
m,j,a)-closed, K̂ ′

j,a is also P ′
j(L̃

′′
m,j,a)-closed since

the sup C operation will maintain the closure. Therefore, Proposition 3.13 and equa-

tion (3.21) can be employed to transform P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a into:

P ′−1
j (K̂ ′

j,a)∩ L̃′m,j,a = P ′−1
j (K̂ ′

j,a)∩ (P ′−1
j−1(K̂

′
j−1,a)∩ L̃′′m,j,a) = P ′−1

j (K̂ ′
j,a)∩P ′−1

j−1(K̂
′
j−1,a)

(3.23)

Likewise employing equation (3.22),

P ′−1
j (K̂ ′

j,a) ∩ L̃′j,a = P ′−1
j (K̂ ′

j,a) ∩ (P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′j,a) = P ′−1

j (K̂ ′
j,a) ∩ P ′−1

j−1(K̂
′
j−1,a)

(3.24)

Referencing equation (3.17) and repeating the logic of equations (3.23) and (3.24):

K̃m,j−1,a =

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) ∩
j−1⋂
i=1

L̃′′m,i,a =

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) (3.25)

K̃j−1,a =

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) ∩
j−1⋂
i=1

L̃′′i,a =

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) (3.26)

48

• Employing equations (3.23), (3.24), (3.25), and (3.26), equation (3.20) becomes:

P ′−1
j (K̂ ′

j,a) ∩ P ′−1
j−1(K̂

′
j−1,a) ∩

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) =

P ′−1
j (K̂ ′

j,a) ∩ P ′−1
j−1(K̂

′
j−1,a) ∩

j−1⋂
i=1

P ′−1
i (K̂ ′

i,a) (3.27)

• Now note that K̂ ′
j,a ⊆ L′m,j,a ⊆ Pj(K̂

′
j−1,a). Therefore, P ′

j(P
′−1
j (K̂ ′

j,a)) ⊆
P ′

j(P
′−1
j−1(K̂

′
j−1,a)). Furthermore, Σ(P ′−1

j (K̂ ′
j,a)) ⊆ Σj. Also since P ′

j has the observer

property with respect to P ′−1
j−1(K̂

′
j−1,a), we can apply Proposition 3.14 to get the

following:

P ′−1
j (K̂ ′

j,a) ∩ P ′−1
j−1(K̂

′
j−1,a) = P ′−1

j (K̂ ′
j,a) ∩ P ′−1

j−1(K̂
′
j−1,a)

• Since in general, P ′
j−k+1(∩j

i=j−k+1P
′−1
i (K̂ ′

i,a)) ⊆ P ′
j−k+1(P

−1
j−k(K̂

′
j−k,a)),

Σ(∩j
i=j−k+1P

′−1
i (K̂ ′

i,a)) ⊆ Σj−k+1, and P ′
j−k+1 has the observer property with respect

to P ′−1
j−k(K̂

′
j−k,a), we can repeatedly apply Proposition 3.14,

j⋂
i=1

P ′−1
i (K̂ ′

i,a) =

j⋂
i=1

P ′−1
i (K̂ ′

i,a) (3.28)

• Comparing the result of equation (3.28) to equation (3.27), therefore, shows that

P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a and K̃m,j−1,a are nonconflicting. And hence equation (3.20) be-

comes:

P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a ∩ K̃m,j−1,a = P ′−1
j (K̂ ′

j,a) ∩ L̃′j,a ∩ K̃j−1,a

• Then applying Proposition 4.7 once more,

P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a ∩ K̃m,j−1,a = P ′−1
j (K̂ ′

j,a) ∩ L̃′j,a ∩ K̃j−1,a (3.29)

Comparing the above to equation (3.19) demonstrates that in general, K̃m,j,a =

K̃j,a.

• Furthermore, K̃m,j,a, K̃m,j−1,a, . . ., K̃m,1,a are nonconflicting since K̃m,j,a ⊆ K̃m,j−1,a ⊆
. . . ⊆ K̃m,1,a by definition. Therefore,

K̃m,1,a ∩ . . . ∩ K̃m,p,a = K̃1,a ∩ . . . ∩ K̃p,a (3.30)

• The only step left is to address those events abstracted away by P1.

49

• Using the definitions in equation (3.17), we get the following:

p⋂
j=1

K̃j,a =

p⋂
j=1

P ′−1
j (K̂ ′

j,a) ∩ L̃a

p⋂
j=1

K̃m,j,a =

p⋂
j=1

P ′−1
j (K̂ ′

j,a) ∩ L̃m,a (3.31)

Therefore,
⋂p

j=1 K̃m,j,a ⊆ L̃m,a = P1(Lm).

• Since it is further known that P1 possesses the Lm-observer property and Lm = L,

Proposition 4.7 gives us that:

P−1
1 (

p⋂
j=1

K̃m,j,a) ∩ Lm = P−1
1 (

p⋂
j=1

K̃m,j,a) ∩ L (3.32)

• Recalling equations (3.17), (3.30), (3.31) and the fact that Lm ⊆ L ⊆ P−1
1 (P1(L)) =

P−1
1 (La), we can show the following:

P−1
a (

p⋂
j=1

K̃m,j,a) ∩ Lm = P−1
1 (

p⋂
j=1

K̃j,a) ∩ Lm

= P−1
1 (

p⋂
j=1

P ′−1
j (K̂j,a) ∩ La) ∩ Lm

=

p⋂
j=1

P−1
1 (P ′−1

j (K̂j,a)) ∩ P−1
1 (La) ∩ Lm

=

p⋂
j=1

P−1
j (K̂j,a) ∩ Lm =

p⋂
j=1

K̃m,j

(3.33)

• Similarly, we can show

P−1
1 (

p⋂
j=1

K̃m,j,a) ∩ L =

p⋂
j=1

K̃j (3.34)

• Examining equations (3.32), (3.33), and (3.34), we have shown our desired result,

K̃m,1 ∩ K̃m,2 ∩ . . . ∩ K̃m,p = K̃1 ∩ K̃2 ∩ . . . ∩ K̃p.

Lemma 3.16 is the second main result of this chapter; it shows that the conjunction

of languages representing the supervised behavior of each of the modules is Σu-

controllable with respect to L. The proof of this result follows the same type of

induction logic used in proving Lemma 3.15.

50

Lemma 3.16. The conjunction of modular supervisors constructed by the procedure

of Section 3.1, K̃m,1 ∩ K̃m,2 ∩ . . . ∩ K̃m,p, is Σu-controllable with respect to L if such

a set of nonempty modular supervisors exists.

Proof.

• The first step of this proof is to show that
⋂

K̃m,j,a is Σu,1-controllable with respect

La = P1(L).

• Beginning on the first level of hierarchy, L̃′m,1,a = L̃′′m,1,a. Therefore according to

equation (3.18), K̃m,1,a = P ′−1
1 (K̂ ′

1,a) ∩ L̃′′m,1,a

• Furthermore, since P1 is the projection employed on the first level, P ′−1
1 (K̂ ′

1,a) =

K̂ ′
1,a and L̃′′m,1,a = L′′m,1,a. Therefore, K̃m,1,a = K̂ ′

1,a ∩ L̃′′m,1,a

• By construction, K̂ ′
1,a is Σu,1-controllable with respect to L′′1,a = L̃′′1,a. Further-

more, since K̂ ′
1,a ⊆ L′′m,1,a = L̃′′m,1,a, K̂ ′

1,a and L̃′′m,1,a are nonconflicting. Therefore,

Proposition 3.4 provides that K̃m,1,a is Σu,1-controllable with respect to L̃′′1,a.

• Furthermore, since La ⊆ L̃′′1,a, Proposition 3.3 provides that K̃m,1 is Σu,1-controllable

with respect to La.

• Moving up to higher levels of the hierarchy, each K̂ ′
j,a is Σu,j-controllable with

respect to L′j,a = P ′
j(L̃

′
j,a) by construction where it is now the case that L̃′m,j,a 6=

L̃′′m,j,a. Each P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a is then Σu,1-controllable with respect to L̃′j,a by

Proposition 3.11. L̃′j,a is built to include a plant subsystem as a well as the controlled

subplant from the previous level, L̃′j,a = P ′−1
j−1(K̂

′
j−1,a) ∩ L̃′′j,a.

• Applying Proposition 3.3, P ′−1
j (K̂ ′

j,a) ∩ L̃′m,j,a is Σu,1-controllable with respect to

K̃j−1,a ∩La. Furthermore, based on the logic of Lemma 3.15, P ′−1
j (K̂ ′

j,a)∩ L̃′m,j,a and

K̃m,j−1,a are nonconflicting. Also from the induction hypothesis, K̃m,j−1,a is Σu,1-

controllable with respect to La. Therefore, Proposition 3.5 provides that P ′−1
j (K̂ ′

j,a)∩
L̃′m,j,a ∩ K̃m,j−1,a is Σu,1-controllable with respect to La.

• Examining equation (3.19), it can then be seen that each K̃m,j,a is Σu,1-controllable

with respect to La. Furthermore, since K̃m,j,a ⊆ K̃m,j−1,a ⊆ . . . K̃m,1,a, the set of

modular supervisors are nonconflicting. Therefore, Proposition 3.4 provides that the

conjunction
⋂

K̃m,j,a is Σu,1-controllable with respect La.

• The only step left then is to lift each K̃m,j,a to the global alphabet.

• Recall, La = P1(L). Since
⋂

K̃m,j,a is Σu,1-controllable with respect to P1(L),

Proposition 3.11 provides that P−1
1 (

⋂
K̃m,j,a)∩Lm is Σu-controllable with respect to

L. Examination of equation (3.33), therefore, demonstrates that the behavior allowed

51

by the conjunction of modular supervisors K̃m,1∩K̃m,2∩ . . .∩K̃m,p is Σu-controllable

with respect to L.

Lemma 3.15 and Lemma 3.16 then provide us with the overall desired result, that

the behavior provided by the supervisor languages constructed in Section 3.1 is safe

and nonblocking. Specifically, Lemma 3.15 demonstrates that the behavior is non-

blocking and Lemma 3.16 demonstrates that the control required by the supervisors

is realizable.

Theorem 3.17. The set of modular supervisors constructed by the procedure of Sec-

tion 3.1 will meet the given specifications in a nonblocking manner when acting in

conjunction if such a set of nonempty nonblocking modular supervisors exists.

Proof. Follows directly from Lemma 3.15 and Lemma 3.16.

The result of Theorem 3.17 demonstrates that employing abstractions that pos-

sess the respective observer properties provides Σu-controllability and nonblocking.

However, it does not necessarily lead to an optimal solution. This suboptimality

arises at least in part from the fact that if a relevant controllable event is abstracted

away, the ability to disable it as a means of preventing an uncontrollable continuation

is lost.

In the context of a single system, [80] introduced a property called output-control-

consistency (OCC) that addresses this situation. The presence of this OCC property

along with the observer property can be employed to demonstrate that the optimal

control generated for an abstracted system can be applied to the unabstracted system

and still achieve optimal supervision. Maintenance of the OCC property in modular

approaches, however, is less well understood. For our approach, we will leave the

problem of optimal supervision as an open problem. It is, however, understood that

abstracting away fewer controllable events will make the behavior allowed by our

approach less restrictive.

3.4 Implementation Examples and Discussion

In this section we will implement our procedure on two moderately large exam-

ples. The purpose of this exercise is to further demonstrate the strengths of our

approach, and to provide some heuristics for its implementation. Specifically, guide-

lines will be provided for how to choose the order in which the modular specifications

52

are addressed. As was demonstrated in the example of Section 3.1, the order in which

the modular supervisors are built is not unique and can have a large effect on the

size of the resulting supervisors.

3.4.1 Ordering algorithm

Examining the partitioning of the FMS example shown in Fig. 3.1, one can see

that there are two disjoint modules on the first level of the hierarchy. In constructing

the supervisor languages for these modules, very little abstraction will be possible

since all of the component specifications are on the current or remaining levels of the

hierarchy. In moving up to the next level of the hierarchy, the two existing super-

visor languages will have to be composed leading to a multiplicative growth of the

state space. Since these two supervisor languages do not share any relevant events,

their composition did not increase the number of events that can be considered for

abstraction. Therefore, this partition is not very efficient because it unnecessarily

grows the size of the state space without helping to increase the amount of reduction

that can be achieved by the abstraction.

A more efficient approach is to address only a single specification per level. This

allows for more reduction since each time we move up a level of the hierarchy more

events become available for abstraction. This approach has been assumed in the

procedure of Section 3.1 and the proofs found throughout the paper.

Even with this improvement, we are still left with the question of which order to

address the modular specifications in. The guideline we will choose to adhere to here

is to maximize the amount of reduction possible at lower levels of the hierarchy. In

order to make application of this guideline more rigorous, we will adapt an algorithm

from [65].

In our approach, since each level of the hierarchy only addresses one specification,

each successive “plant” has the form L′m,j+1,a = Pj+1(K̂
′
j,a)‖L′′m,j+1,a. The decision

as to which specification to address next will be made based on the potential char-

acteristics of the resulting subsystem K ′
j+1,a = Kspec,j+1,a‖L′m,j+1,a. This evaluation

53

will be made employing the following two metrics:

Aj+1 :=

∣∣∣∣Kspec,j+1‖K̂ ′
j,a‖L′′m,j+1

∣∣∣∣
∣∣∣∣Kspec,j+1

∣∣∣∣×
∣∣∣∣K̂ ′

j,a

∣∣∣∣×
∣∣∣∣L′′m,j+1

∣∣∣∣

Bj+1 :=

∣∣∣∣Pj+1(Kspec,j+1‖K̂ ′
j,a‖L′′m,j+1)

∣∣∣∣
∣∣∣∣Kspec,j+1‖K̂ ′

j,a‖L′′m,j+1

∣∣∣∣

In the above, the notation
∣∣∣∣ ·

∣∣∣∣ represents the cardinality of the automaton which

generates the associated language, that is, the size of the automaton’s state space.

In general, we will employ a minimal automaton to generate the given language.

Specifically, Aj+1 is a measure of the potential size reduction due to some states

not being reachable in the composition, while Bj+1 is a measure of the potential for

reduction due to abstraction. The projection Pj+1 : Σ∗ → Σ∗
j+1 erases those events

that are not relevant to the current or remaining specifications and that maintain

the associated observer properties. Since in choosing the next specification it may

not be possible to minimize both Aj+1 and Bj+1, we will rather try and minimize

their product. This idea leads to the metric that we will ultimately use:

ψj+1 = Aj+1 ·Bj+1 =

∣∣∣∣Pj+1(Kspec,j+1‖K̂ ′
j,a‖L′′m,j+1)

∣∣∣∣
∣∣∣∣Kspec,j+1

∣∣∣∣×
∣∣∣∣K̂ ′

j,a

∣∣∣∣×
∣∣∣∣L′′m,j+1

∣∣∣∣

Therefore given the closed loop subsystem from the previous level K̂ ′
j,a, the next

specification will be chosen based on which one minimizes ψj+1. Since choosing

a specification that is disjoint from K̂ ′
j,a will not result in any additional events

becoming “local,” only those remaining specifications that “neighbor” the current

K̂ ′
j,a will be chosen from. This set of neighbors is defined as follows, Nj = {k | [k >

j] ∧ [rel(Kspec,j+1)∩rel(K̂ ′
j,a) 6= ∅]}, where it is assumed the indexing is sequential and

neighbors are defined as sharing relevant events. One desirable element of the metric

ψj+1 is that it does not actually require computing the unabstracted automaton that

generates the language Kspec,j+1‖K̂ ′
j,a‖L′′m,j+1.

Before the algorithm is begun, there is no K̂ ′
j,a from the previous level and no

set of neighbors. Therefore, we will choose the first specification using the same

metric, but with the K̂ ′
j,a term missing. Furthermore, since no specifications have

been addressed yet, we will use P1 : Σ∗ → Σ∗
1 as the initial projection since it erases

only events that are not relevant to any specifications. A summary of this algorithm

is given below:

54

Algorithm 3.18. Specification Ordering Algorithm

Step 1: Initially, choose a specification such that

∣∣∣∣P1(Kspec,1‖L′′m,1)

∣∣∣∣∣∣∣∣Kspec,1

∣∣∣∣×
∣∣∣∣L′′m,1

∣∣∣∣ is minimum.

Step 2: Follow procedure of Section 3.1 for building the first modular supervisor,

which generates K̂ ′
1,a.

Step 3: Choose next specification from the set of neighbors, N1, such that ψ2 is

minimum.

Step 4: Follow procedure of Section 3.1 for building the next modular supervisor,

which generates K̂ ′
2,a

Step 5: Repeat steps 3 and 4 until there are no more specifications left to address.

3.4.2 Flexible Manufacturing System (FMS) example

The first example we will examine will be the FMS example first introduced in

Chapter 1 and shown in Fig. 1.3. The basic idea is that parts enter from the left

via the conveyor Con2. From Con2 the parts pass through buffer B2 to a handling

robot. This robot then passes parts, through buffer B4, to a lathe which can generate

two different types of parts. After the lathe has finished an operation and returned a

part to the robot, again through buffer B4, the robot then passes the part to either

buffer B6 or buffer B7 depending on the part type. If passed to B7, the part is then

sent to a painting machine PM via conveyor Con3 and buffer B8. Once the painting

operation is finished, the part is passed back through the same sequence by which it

arrived. From buffers B6 and B7, the two different parts are passed to the machine

AM for finishing.

The machines Con2, Robot, Lathe, Con3, PM, and AM can be thought of as

components of the open-loop plant. The automata models for these machines are

given Fig. 3.10.

The buffers B2, B4, B6, B7, and B8 can be thought of as the component specifi-

cations for the system where it is desired that the buffers not underflow or overflow.

The automata models for these machines are given Fig. 3.11. In these automata odd

labels represent controllable events and even labels represent uncontrollable events.

Furthermore, all automata have the same event set, though only relevant events are

pictured. If a set of traditional modular supervisors are constructed in the sense

of [8], it is interesting to note that their conjunction will result in blocking.

Following Algorithm 3.1 of Section 3.1, the first step is to choose an initial spec-

55

 Con2 : PM :

 Con3 : AM :

 Lathe :

 Robot :

 37

 38

 33

 34

 39

 30

 51

 54

 53

 52

 71

 74

 73

 72

 81

 82

 21

 22

 61

 63

 64

 65

 66

Figure 3.10: Automata models of each machine in the FMS example

ification. Employing the heuristic approach presented in Algorithm 3.18, we choose

B4 to be the first specification since it minimizes the following quantity, where the

associated subplant is composed of components Robot and Lathe.
∣∣∣∣P1(Kspec,1‖L′′m,1)

∣∣∣∣
∣∣∣∣Kspec,1

∣∣∣∣× ∣∣∣∣L′′m,1

∣∣∣∣ =

∣∣∣∣B4‖Robot‖Lathe
∣∣∣∣

∣∣∣∣B4
∣∣∣∣×

∣∣∣∣Robot‖Lathe
∣∣∣∣ = 0.375

According to Algorithm 3.1, the next step is to abstract the plant submodules

associated with our first specification. Since these plant components do not have any

relevant events that are not relevant to the current or remaining specifications, the

projection P1 does not abstract away any relevant events. The resulting supervisor

language for this module K̂ ′
1,a is generated by an automaton with 9 states and 10

transitions.

Moving up to the next level of the hierarchy, we again employ the heuristics of

Algorithm 3.18 to choose the next specification. Of the remaining specifications, B2,

B6, and B7 all share relevant events with the first module and hence are considered to

be neighbors. Of these, we choose B7 to be our next specification since it minimizes

the following expression. The “plant” for this module consists of the controlled

56

 B8 : 72

 73

 82

 81

 B7 : 30

 65

 74

 71

 B2 :

 22

 33

 B6 :

 38

 63

 B4 :

 52

 37

 34

 51,53

 54

 39

Figure 3.11: Automata models of each buffer in the FMS example

system from the first level K̂ ′
1,a, along with subplants AM and Con3.

ψ2 =

∣∣∣∣P2(Kspec,2‖K̂ ′
1,a‖L′′m,2)

∣∣∣∣
∣∣∣∣Kspec,2

∣∣∣∣×
∣∣∣∣K̂ ′

1,a

∣∣∣∣×
∣∣∣∣L′′m,2

∣∣∣∣ =

∣∣∣∣B7‖P2(K̂
′
1,a)‖P2(AM)‖Con3

∣∣∣∣
∣∣∣∣B7

∣∣∣∣×
∣∣∣∣K̂ ′

1,a

∣∣∣∣×
∣∣∣∣AM ‖Con3

∣∣∣∣ ≈ 0.296

At this level of the hierarchy, the set of events {34, 37, 39, 51, 52, 53, 54, 64, 66} are

not relevant to any of the remaining specifications and hence can be considered for

abstraction. It turns out that the events 34, 52, 54, 64, and 66 can be projected

away without causing a violation of the associated Lm-observer properties. This set

of events leads to a reduction in state size of the automata used for generating K̂ ′
1,a

and AM. None of these events, however, are relevant to B7 or Con3 and hence P2

erases only irrelevant events from the languages generated by these automata. The

resulting supervisor for this “plant” and specification K̂2,a can be generated by an

automaton with 64 states and 189 transitions.

For the next specification, we choose buffer B8 since it minimizes the quantity

ψ3. The plant for this specification will consist of the controlled subsystem from

the previous level K̂2,a and the machine PM. Of those events that are not relevant

to B8 or any of the remaining specifications, 30 and 74 can be projected away

without causing a violation of the associated Lm-observer properties. The resulting

supervisor language for this abstracted plant and specification K̂3,a can be generated

57

by an automaton with 110 states and 315 transitions.

Moving up another level of hierarchy, we choose buffer B6 to be the next spec-

ification since it minimizes the quantity ψ4. For this specification, the plant will

simply consist of K̂3,a since all the subplants relevant to B6 were already included

in constructing earlier supervisor languages. At this point, the only events that are

not relevant to B6 or the other remaining specification B2 that do not cause a vio-

lation of the associated Lm-observer property are 71, 72, 81, and 82. The resulting

supervisor language for this module K̂4,a can be generated by an automaton with 71

states and 149 transitions.

Now addressing the final specification B2, the plant for this module will consist of

the controlled subsystem from the previous level K̂4,a and the only remaining plant

component Con2. Since there are no further specifications left, all events not relevant

to B2 are eligible to be considered for abstraction. It turns out, however, that only

events 37 and 38 can be abstracted without causing a violation of the Lm-observer

property. The resulting supervisor language K̂5,a for this module can be generated

by an automaton with 165 states and 435 transitions. This is the largest automaton

used to generate any of the modular supervisor languages. Also, construction of

this supervisor language required building an automaton with 220 states and 609

transitions in an intermediate step. The details of each step of this example are

presented in Table 3.1.

For the purposes of comparison, the monolithic supervisor has 2256 states and

7216 transitions, while the composition of all plant and specification components

leads to an automaton with 13,248 states and 46,424 transitions. These numbers give

some indication of the reduction in complexity offered by this approach to supervisory

control. A drawback of this modular approach, however, is that it results in more

restrictive control. In this example, the modular solution is more restrictive than the

monolithic solution, though both solutions allow the FMS to process a maximum of

six pieces at a given time.

The modular solution with the buffers addressed in the order B4 → B7 → B8 →
B6 → B2 presented above will be referred to as FMS Modular 1 in the complexity

discussion presented in Section 3.4.4. If the specifications had rather been addressed

in numerical order, B2 → B4 → B6 → B7 → B8 , then a different set of modu-

lar supervisors would have been arrived at. This alternate solution, which we will

58

Table 3.1: Application of Algorithm 3.1 to FMS example
Step Language States Notes

Constructed (Transitions)
1 L(B4) 4(7) choose first specification, ψ1 = 0.375

L(Robot) 4(6) associated plant components
L(Lathe) 3(4)

2 no relevant events can be projected away
3 L′1,a 12(34) plant: L′1,a = L(Robot)‖L(Lathe)

K ′
1,a 18(23) allowable language: K ′

1,a = L(B4)‖L′1,a

4 K̂ ′
1,a 9(10) supervisor language: K̂ ′

1,a = sup C(K ′
1,a, L′1,a)

5 P−1
1 (K̂ ′

1,a) does not have to be performed in practice
6 L(B7) 3(4) move to next level of hierarchy, ψ2 ≈ 0.296

L(AM) 4(5) associated plant components
L(Con3) 3(4)

2 P2(K̂ ′
1,a) 6(7) {34,52,54} projected away

P2(L(AM)) 2(3) {64,66} projected away
3 L′′2,a 6(17) L′′2,a = P2(L(AM))‖L(Con3)

L′2,a 36(144) plant: L′2,a = P2(K̂ ′
1,a)‖L′′2,a

K ′
2,a 96(294) allowable language: K ′

2,a = L(B7)‖L′2,a

4 K̂ ′
2,a 64(189) supervisor language: K̂ ′

2,a = sup C(K ′
2,a, L′2,a)

5 P−1
2 (K̂ ′

2,a) does not have to be performed in practice
6 L(B8) 3(4) move to next level of hierarchy, ψ3 ≈ 0.547

L(PM) 2(2) associated plant component
2 P3(K̂ ′

2,a) 50(149) {30,74} projected away
3 L′′3,a 2(2) L′′3,a = L(PM)

L′3,a 100(398) plant: L′3,a = P3(K̂ ′
2,a)‖L′′3,a

K ′
3,a 210(625) allowable language: K ′

3,a = L(B8)‖L′3,a

4 K̂ ′
3,a 110(315) supervisor language: K̂ ′

3,a = sup C(K ′
3,a, L′3,a)

5 P−1
3 (K̂ ′

3,a) does not have to be performed in practice
6 L(B6) 2(2) move to next level of hierarchy, ψ4 ≈ 0.242
2 P4(K̂ ′

3,a) 40(99) {71,72,81,82} projected away
3 L′′4,a − no new subplant components

L′4,a 40(99) plant: L′4,a = P4(K̂ ′
3,a)

K ′
4,a 80(170) allowable language: K ′

4,a = L(B6)‖L′4,a

4 K̂ ′
4,a 71(149) supervisor language: K̂ ′

4,a = sup C(K ′
4,a, L′4,a)

5 P−1
4 (K̂ ′

4,a) does not have to be performed in practice
6 L(B2) 2(2) move to next level of hierarchy

L(Con2) 2(2) associated plant component
2 P5(K̂ ′

4,a) 55(119) {37,38} projected away
3 L′′5,a 2(2) L′′5,a = L(Con2)

L′5,a 110(348) plant: L′5,a = P5(K̂ ′
4,a)‖L′′5,a

K ′
5,a 220(609) allowable language: K ′

5,a = L(B2)‖L′5,a

4 K̂ ′
5,a 165(435) supervisor language: K̂ ′

5,a = sup C(K ′
5,a, L′5,a)

5 P−1
5 (K̂ ′

5,a) does not have to be performed in practice
6 no further subsystems left
7 procedure is finished

refer to as FMS Modular 2, actually results in smaller automata being constructed.

Specifically, the largest automaton that generates a modular supervisor language has

59

106 states and 270 transitions, and the largest intermediate automaton that is con-

structed in the overall process has 210 states and 516 transitions. It turns out these

two modular solutions produce the same behavior, though this will not be the case

in general. These examples give some indication of how difficult it is to determine a

“good” ordering with which to address the specifications.

3.4.3 Automated Guided Vehicle (AGV) example

We will now apply the supervisor construction approach of this chapter to a

system of automated guided vehicles (AGVs). The details of the component spec-

ification and plant modules employed here can be found in [77]. Specifically, there

are five plant modules {AGV1, AGV2, AGV3, AGV4, AGV5} representing each of five

AGVs. Also, there are a total of eight component specifications. Five of these

{Z1, Z2, Z3, Z4, IPS} represent areas of the factory that can only be occupied by

a single AGV at a time, thereby avoiding the collision of AGVs. The remaining

three specifications {WS1,WS2,WS3} represent workstations and dictate the order

in which parts are unloaded from and loaded to the AGVs. The example presented

in [77] is modified from its original form in [29]. The monolithic supervisor built

for this system is represented by an automaton that has 4406 states and 11,338

transitions. Furthermore, when all component specifications and plant modules are

composed into a single automaton, that automaton has 22,784 states and 67,520

transitions. Note that traditionally constructed modular supervisors are pairwise

nonconflicting, but block when all are acting in conjunction.

One possible solution employing our approach addresses the specifications in the

order Z1 → IPS → Z2 → WS2 → Z3 → WS3 → Z4 → WS1. This ordering was

chosen using Algorithm 3.18 introduced in Section 3.4.1. The largest resulting mod-

ular supervisor constructed by the IHSC approach is represented by an automaton

that has 96 states and 250 transitions. The largest intermediate automaton built

throughout this example has 144 states and 302 transitions.

The modular solution developed here turns out to be suboptimal. Specifically,

it is more restrictive in terms of which areas of the factory can by occupied by

AGVs at a given time than the monolithic solution which is maximally permissive.

However, both the modular and monolithic solutions allow all three workstations to

contain workpieces simultaneously. In the summary of numerical results presented

60

in Table 3.2, this solution is referred to as AGV Modular 1. If the procedure of this

paper uses the same ordering of specifications, but chooses to not abstract away some

of the controllable events that could otherwise be erased, then it too provides optimal

control. The largest modular supervisor in this case is significantly larger in that it

is represented by an automaton with 576 states and 1700 transitions. Furthermore,

the largest intermediate automaton built in this process has 864 states and 2100

transitions. In Table 3.2, this solution is referred to as AGV Modular 2.

3.4.4 Complexity discussion

Assessment of the complexity advantage provided by the approach of this chapter

is difficult because in the worst case no abstraction is possible and the size of the state

space grows at the same exponential rate as the monolithic approach. As a result,

we cannot show a bound on complexity that is guaranteed to give an improvement as

compared to the monolithic solution. However, in most cases significant abstraction

is possible through the steps of this procedure resulting in a slowing of the exponen-

tial growth of the state space. The examples presented in this section specifically

give some indication of the level of reduction achievable in terms of the size of the

automata that are built. A table summarizing the results of each of the examples of

this section is given below.

Table 3.2: Summary of Results for IHSC Approach
case] states (] transitions)] states (] transitions)

in largest supervisor in largest intermediate automaton

FMS monolithic (opt) 2256 (7216) 13,248 (46,424)

FMS modular 1 (subopt) 165 (435) 220 (609)

FMS modular 2 (subopt) 106 (270) 210 (516)

AGV Monolithic (opt) 4406 (11,338) 22,784 (67,520)

AGV Modular 1 (subopt) 96 (250) 144 (302)

AGV Modular 2 (opt) 576 (1700) 864 (2100)

Apart from the size of the resulting automata, it is also necessary to consider

the complexity of the additional operations required of the procedure of this paper,

including the process of applying a natural projection and the process of finding a

natural projection with the observer property. It is known that in the worst case the

projection of a DES can lead to an exponential growth of the state space, thereby

61

indicating the time complexity of the operation is at worst exponential. However,

it has been demonstrated in [72] that a projection with the observer property is

guaranteed to result in an abstracted system that is no larger than the original

system. Furthermore, [72] demonstrates that under these conditions the complexity

of generating the projected model is at worst polynomial in time. As far as finding

a projection that possesses the observer property, [15] presents a polynomial time

algorithm for finding an extension of the set of observable events for a projection

such that the projection is an observer. Since the process of building a supervisory

controller also has polynomial complexity, the complexity of the monolithic and

modular approaches will both be dominated by a polynomial complexity operation

applied to the largest intermediate automaton that has to be built. Therefore, the

size of the largest intermediate automaton is a reasonable metric for the complexity

of generating supervisory control for a given system. Furthermore, the size of the

largest resulting supervisor provides a reasonable metric for the complexity of the

implementation of the control scheme.

It should be noted that the algorithm of [15] in many cases finds a reasonably small

extension of the observable event set, though it is not guaranteed to be minimal. This

fact, along with the problem of ordering, indicates that it is not possible to find the

minimal reduction of the state space. We can, however, use intuition and experience

to find reasonably good reductions.

One way to further improve the complexity of our approach is to combine it with

other techniques that exist in the literature. For example, the work of [18] pro-

vides results for certain commonly encountered types of systems. For these classes

of systems, it is shown that conditions on certain modules indicate that they will be

nonconflicting with the rest of the system. As such, these modules do not have to be

considered when trying to guarantee nonblocking of the global system. Reduction in

the number of components that must be considered directly results in less complexity

since the size of the state space grows exponentially in the number of components. It

is also possible that the approach of this chapter can be employed with more compu-

tationally efficient data structures than automata, like binary decision diagrams [3]

and state tree structures [46]. In [46] and [62] different data structures are com-

bined with variations of the supervisory control framework to improve complexity

and understandability.

62

3.5 Chapter Summary

This chapter puts forth an incremental procedure for generating a set of modular

supervisors that are nonconflicting by construction. The conjunction of the modular

supervisors was shown to satisfy given specifications without blocking when natural

projections with the Lm-observer property are employed. It is also shown that in

many cases the set of modular supervisors provides suboptimal control. It is ar-

gued that this potential loss of optimality is worth the reduction in complexity this

approach provides.

Examples were presented in Section 3.4, with our modular solution showing sig-

nificant savings in size as compared to the monolithic solution. The approach to

supervisor design presented here is most often useful for systems where the coupling

between elements is well-distributed. If every specification of a system addresses

every plant module, then this approach will likely provide little improvement.

Overall this approach to supervisor construction shares similarities with the work

of [21] and [54], which were developed at approximately the same time and that verify

nonconflict by incrementally constructing the global system using abstraction. The

advantage of the IHSC approach is that it goes beyond just detecting nonconflict to

actually construct modular supervisors that are nonconflicting.

The IHSC approach also shares similarities with another work that was developed

around the same time [17]. This work similarly achieves safe, nonblocking modu-

lar control using an abstraction with the observer property to improve complexity.

In [17], however, the authors construct an additional level of control to resolve con-

flict among the modular supervisors. The modular supervisors constructed by the

IHSC approach are built so that they are nonconflicting by construction, hence an

extra level of control is not necessary. This makes the resulting controllers marginally

less complex to implement than those developed in [17]. Another disadvantage of the

approach of [17] is that their process leads to more interaction between the modules,

thereby limiting the amount of achievable reduction. For example, consider the par-

titioning of the FMS example shown in Fig. 1.4. Since the Robot subplant is shared

between multiple modules, the approach of [17] cannot abstract away any of the

structure of the Robot subplant until the conflict has been resolved between all the

modules that share that component. With the IHSC approach, only those aspects of

63

the structure of the Robot subplant that are relevant to the remaining specifications

must be preserved. The IHSC approach is also able to achieve a greater reduction

than [17] since it does not require that the abstraction be output-control-consistent.

By foregoing this property, however, the optimality of control that the approach

of [17] is able to achieve is sacrificed.

One way to improve the work of this chapter would be to relax some of the

requirements of the IHSC approach. Namely, it could be worthwhile to explore

whether or not the requirement that the specification languages be prefix-closed could

be relaxed, or if reduced supervisors in the sense of [66] could somehow be employed.

It would also be useful if the approach of this chapter could be applied to systems that

do not have the structure of a product system. Looking in the opposite direction, it

would be useful if this approach to supervisor construction could synthesize control

that is maximally permissive by placing additional constraints on the abstraction

we employ. A specific abstraction property that could be investigated would be the

output-control-consistency property required by [17]. A final direction for this work

would be to further explore heuristics for choosing the order in which specifications

are addressed and for determining which events to abstract away.

CHAPTER 4

Equivalence-Based Conflict Resolution

Modular supervisory control is one approach for addressing the DES complexity

problem that is limited in application since modular supervisors can have conflicting

goals and hence can lead to blocking when working in conjunction. The Equivalence-

Based Conflict Resolution (EBCR) approach of this chapter addresses this problem

by proposing a methodology for constructing coordinating filters to resolve conflict

among modular supervisors when it is present. This approach incrementally com-

poses modular supervisors applying abstraction each time a new module is added.

At each step if the resulting composition is blocking, then a filter is constructed to

resolve the conflict.

This type of modular architecture with an additional level of coordinating control

has been employed in previous work, but our approach is unique in that it is the

first to employ a conflict-equivalent abstraction in the construction of the conflict-

resolving filters. Most existing works on supervisor construction that employ abstrac-

tion use an observer-type abstraction. Employing a conflict-equivalent abstraction

is advantageous because it is able to achieve a greater reduction in model size than

an observer-type abstraction [49]. A drawback of a conflict-equivalent abstraction is

that it can introduce nondeterminism into the model.

The work of this chapter, therefore, is developed for nondeterministic automata.

We specifically propose a set of novel requirements on the conflict-resolving filter

laws that, if met, guarantee safe nonblocking control when acting in conjunction with

traditionally built modular supervisors. We then present one possible approach for

constructing filters that meet these proposed requirements. The filter construction

algorithm itself represents a significant contribution in that it generates a covering-

based feedback law in the presence of nondeterminism that results in less restrictive

64

65

control than can achieved by existing state-feedback approaches.

The outline of the rest of this chapter is as follows. Section 4.1 introduces some

technical preliminaries. Section 4.2 provides a procedure for resolving conflict as-

suming that filters exist, while Section 4.3 proves that deterministic filters meeting

the given language-based requirements provide safe nonblocking control. Section 4.4

then proposes a set of analogous state-based requirements that allow the determin-

istic filter laws to be represented by nondeterministic automata. These state-based

requirements are then shown to be satisfied by construction for the covering-based

approach to control introduced in Section 4.5. Section 4.6 applies these results to

the FMS example and Section 4.7 summarizes the contributions of this chapter.

4.1 Supervisor Construction and Abstraction

In the EBCR approach of this chapter, supervisors will be built in the sense of [8]

as shown in Definition 4.1. Let Hi be an automaton realization of a closed-loop

subsystem Si/G
′
i consisting of a plant G′

i under the control of the supervisor Si.

The supervisor synthesis of Definition 4.1 provides that the automaton Hi represents

both the closed-loop behavior of the ith module and its associated supervisor since

Si/G
′
i = Hi‖G′

i = Hi.

Definition 4.1.

G′
i = ‖j∈Ji

Gj, where:

Ji = {j ∈ {1, . . . , n} | Σrel(Gj) ∩ Σrel(Ei) 6= ∅}
Lm(Hi) = sup C(L(Ei) ∩ Lm(G′

i),L(G′
i))

L(Hi) = Lm(Hi) ¦

In the above, the definition of the allowable language as L(Ei)∩Lm(G′
i) results in

a nonmarking supervisor. That is, the supervisor does not affect the marking of the

uncontrolled plant. Additionally, given that the uncontrolled plant is nonblocking,

Lm(G′
i) = L(G′

i), this formulation will result in a nonblocking closed-loop subsystem.

The results of this paper will be stated in terms of the closed-loop modules, Hi. Since

the results do not depend on the supervisor employed, supervisors can be constructed

in a manner different from Definition 4.1. If there are plant modules Gj that do not

share relevant events with any of the specifications Ei, they are treated as closed-loop

66

modules Hi on their own, without any additional supervision. Let {H1, H2, . . . , Hq}
be the resulting set of automata representing the closed-loop modules.

As the modular supervisors are composed, those events that are not relevant to

any of the remaining supervisors can be “hidden,” that is, they can be replaced by the

silent event τ . Hiding these events assists in achieving a greater reduction in model

size. Specifically, the abstraction that will be employed preserves conflict properties.

The notion of conflict-equivalence was introduced earlier in Definition 2.6. Conflict-

equivalent abstraction in general provides a greater reduction in the state size of

a model than either an observation-equivalent abstraction or a projection with the

observer property [49]. A drawback of a conflict-equivalent abstraction is that it is

not as straightforward to implement; it is implemented via heuristics and a select set

of rules [19] [21]. Also, a unique minimal reduction does not exist in general.

In this paper we will employ the notation Ga to represent a conflict-equivalent

abstraction of the automaton G. The abstracted automaton will specifically be

generated in the following manner:

Algorithm 4.2. Conflict-Equivalent Abstraction

Step 1: Given an automaton G, “hide” those events in the set Σh. One approach

for constructing the set Σh in the context of the approach of this paper is presented

within Algorithm 4.6 of Section 4.2. These events are hidden by replacing their

occurrences in the automaton G by the silent event τ resulting in an intermediate

automaton G′.

Step 2: Apply the conflict equivalence preserving rules that will be identified in

Section 4.3.2 and are taken from [19] [21] to G′. The result of these rules is the

reduced automaton Ga. ¦
Remark 4.3. By construction, the intermediate automaton G′ and the abstraction

Ga are conflict equivalent per Definition 2.6. However, the original automaton G

and the reduced automaton Ga are only guaranteed to be conflict equivalent with

respect to automata that do not have any relevant events that were hidden in the

process of generating G′. In the remainder of this paper, we will only hide events

in a manner consistent with this fact, that is, events are only hidden if they are

not relevant to any remaining automata. In a slight abuse of notation, we will still

write that G 'conf Ga. Note also that G and Ga are consistent with respect to the

property of blocking. ¦

67

The software tool Supremica can be employed for generating conflict-equivalent

abstractions [1]. Since each automaton in this dissertation has the same event set Στ ,

it is implied that any hidden events are self-looped at every state of the resulting au-

tomaton. However, we will not in general picture all of these self-looped transitions.

Example 4.4 demonstrates a conflict-equivalent abstraction.

Example 4.4. Consider automaton G in Fig. 4.1 where event f is not relevant to any

other automata. Since f is “local” to G, we can hide it by replacing all occurrences of

f by the silent event τ resulting in a new automaton G′. In G′, states 1 and 2 are not

observation equivalent because state 1 has the observed continuation bc while state 2

does not. States 1 and 2, however, can be merged to achieve the conflict-equivalent

automaton Ga. We will consider the abstraction Ga to have the same alphabet as

G, namely Στ , but will not picture an event (except τ) if it is not relevant to the

automaton. Therefore, one can imagine that Ga has the event f self-looped at every

state. A consequence of this abstraction is that Ga is nondeterministic. ¦

 b

 G :

 1

 3

 5

 0

 b

 2

 4

 c
 d

 a

 b

 G :

 3

 5

 0

 b

 4

 c
 d

 a f

 a

 1.2

 f
t

 b

 G’ :

 1

 3

 5

 0

 b

 2

 4

 c
 d

 a t

t

Figure 4.1: Illustrative example of a conflict-equivalent abstraction

In order to make the conflict-equivalent abstraction useful, we need to show that

it is preserved under the synchronous composition operation ‖. This result follows

from Proposition 4.5 which is a reformulation of a result from [50].

Proposition 4.5. Let G, Ga, and H be automata. Also assume that any events

hidden in the process of generating Ga (Algorithm 4.2) are not relevant to H, that

is, Σ(H) ∩ Σh = ∅. If G 'conf Ga then G‖H 'conf Ga‖H. See Remark 4.3.

The above proposition can be used to show that if no relevant events shared

between G1 and G2 are hidden, then G1‖G2 'conf G1,a‖G2,a. Analogous results can

also be shown for conflict-equivalent languages.

68

4.2 Incremental Conflict Resolution Using Filters

The overall goal of this chapter is to generate a set of modular supervisors and

conflict-resolving filters that control the behavior of a given plant so that it satis-

fies a set of specifications in a nonblocking manner. A further goal is to limit the

computational complexity of constructing the supervisors and filters. In this section

we describe a procedure by which conflict is incrementally detected and resolved

among modular supervisors. Requirements on the conflict-resolving filters are pre-

sented in Section 4.3 and Section 4.4, while an algorithm for constructing the filters

is presented in Section 4.5.

In the following procedure, it will be assumed without loss of generality that the

modules Hi are addressed sequentially, that is, each pass through the procedure the

next module added to the composition has index i+1. Additionally, the composition

for which the last module added was Hi will be denoted H ′
i where the index i,

therefore, indicates both the current composition of components as well as the most

recently added module. Since a filter is constructed to resolve conflict in a given

composition H ′
i only when the composition is blocking, the index j on filters Hfilt ,j

increments independently.

Algorithm 4.6. Conflict Resolution

Step 1: Build modular supervisors according to Definition 4.1. Note that the super-

visors may be constructed in other ways as long as the closed-loop automaton Hi is

employed in the subsequent steps. Any plant components that are not addressed by

a specification are treated as additional closed-loop modules. Let {H1, H2, . . . , Hq}
represent the resulting set of closed-loop modules. Section 4.3.4 identifies a special

case where the full closed-loop automaton Hi need not be employed.

Step 2: For each supervised subsystem Hi, generate a conflict-equivalent abstraction

Hi,a according to Algorithm 4.2. The set of hidden events in this step corresponds to

those events relevant to only a single Hi, that is, Σh = Σ−⋃
i6=j(Σrel(Hi)∩Σrel(Hj)).

Step 3: Choose an abstracted subsystem H1,a with which to begin the procedure.

Let H ′
i,a = H1,a where i = 1 is the index for the individual closed-loop modules. Also

initialize the index for the filters, j = 1.

Step 4: Choose one of the remaining abstracted subsystems, Hi+1,a, to compose with

H ′
i,a. This operation is performed via synchronous composition, H ′

i+1 = H ′
i,a‖Hi+1,a.

69

Step 5: If the composition H ′
i+1 is nonblocking, skip to Step 7, otherwise proceed to

Step 6.

Step 6: At this point a coordinating filter law Hfilt ,j : L(H ′
i+1) −→ 2Σ must be

generated to resolve the detected conflict in the preceding blocking composition.

Otherwise stated, Hfilt ,j is built so that the controlled system Hfilt ,j/H
′
i+1 is non-

blocking. Specific requirements for this filter will be presented in Section 4.3 and

Section 4.4, and an approach for its construction will be proposed in Section 4.5.

After the filter is constructed, increment the filter index j.

Step 7: If all controlled subsystems have been addressed, then i = q and the proce-

dure is finished. Otherwise, more abstraction is performed according to Algorithm 4.2

and this overall procedure is repeated beginning at Step 4. The abstraction is per-

formed in order to take advantage of the fact that some events are no longer relevant

to any remaining abstracted subsystems and hence can now be hidden. More pre-

cisely, the set of hidden events becomes

Σh ← Σh ∪ (Σ−
⋃

k>i+1

Σrel(Hk,a)) (4.1)

and H ′
i+1 = H ′

i,a‖Hi+1,a is abstracted to generate H ′
i+1,a. The index i is then incre-

mented before returning to Step 4. ¦

The process in Step 4 to Step 7 of abstracting and composing subsystems and

adding filters as necessary to prevent blocking is repeated until there are no more

subsystems remaining. The work of [21] offers a sizable survey of heuristics for

determining the ordering with which subsystems are addressed. The end result of this

procedure is a set of filters that act in conjunction with the set of modular supervisors.

If the controlled subsystems are nonconflicting on their own, no filters are needed. If

a filter is generated that is the empty automaton, it is possible that a nonempty filter

can be found by abstracting away fewer details of the controlled subsystems, that

is, by making Σh smaller. A nonempty solution could also be found by addressing

the modules in a different order. This approach to conflict resolution is unique in

that it is the first to employ conflict-equivalent abstraction in the construction of

coordinating filters for conflict resolution. The details of this coordinating level of

control will be discussed in the following three sections. Section 4.3 provides a set of

language-based requirements that are sufficient to guarantee safe nonblocking control

when the filters are represented by deterministic automata. Section 4.4 then provides

70

an analogous set of state-based requirements that allow the deterministic filter laws to

be represented by possibly nondeterministic automata, while Section 4.5 introduces

a methodology for constructing filters that satisfy these state-based requirements.

4.3 Language-Based Filter Requirements

In the preceding section, Algorithm 4.6 was presented for incrementally resolving

conflict among a set of supervised subsystems. In this section we will provide a set

of language-based conditions on these deterministic filter laws and prove they are

sufficient to provide safe nonblocking control when acting in conjunction with tradi-

tionally built modular supervisors. Within this process, we will examine the details

of how a conflict-equivalent abstraction is generated. At the end of this section, we

will also discuss how the closed-loop modules constructed as part of Algorithm 4.6

can be reduced to further improve the overall complexity of our approach.

In Algorithm 4.6, each filter law Hfilt ,j is built with respect to a blocking composi-

tion of abstracted automata that have preceded it. Here we will denote the associated

blocking composition Bj,a. In the proofs that follow, we will assume that the control

required by each filter law Hfilt ,j is realized by a deterministic, nonblocking automa-

ton Hfilt ,j and applied via synchronous composition, that is, Hfilt ,j/Bj,a = Hfilt ,j‖Bj,a,

therefore,

Bj,a = (Hfilt ,j−1‖ . . . (Hfilt ,1‖H1,a‖H2,a)a . . .)a‖Hij ,a

Furthermore, we will prove that deterministic filter automata meeting the follow-

ing three requirements (R1-R3) will provide safe nonblocking control when acting in

conjunction with the modular supervisors.

Language-based filter requirements

R1) Hfilt ,j‖Bj,a is nonblocking

R2) L(Hfilt ,j) is language controllable w.r.t L(Bj,a)

R3) Σrel(Hfilt ,j) ∩ Σh = ∅
In the above, requirement R3 is meant to prevent a given filter law from trying

to affect the occurrence of events that have been hidden. Since the set Σh changes

at each iteration, it is implicit in R3 that Σh be the set taken at the time the filter

Hfilt ,j is constructed. We must now prove that these requirements are sufficient for

guaranteeing safe nonblocking control can be realized.

71

In Section 4.4 we will present new state-based requirements that will allow our

deterministic filter laws Hfilt ,j to be realized by possibly nondeterministic automata.

These state-based requirements are also shown to be satisfied by filters constructed

according to the algorithm of Section 4.5.

4.3.1 Nonblocking

Recall that the conjunction of modular supervisors satisfies the global specification

E. Since the addition of filters only serves to further restrict the behavior of the

system, the conjunction of filters and modular supervisors also provides safety. We

will now demonstrate global nonblocking. In the following we will assume sequential

ordering of the automata without loss of generality.

Theorem 4.7. Let Hi be the automaton representing the behavior of the ith con-

trolled subsystem where i ∈ {1, . . . , q}. Also let there be filter automata Hfilt ,j ,

j ∈ {1, . . . , k}, constructed according to Algorithm 4.6 and satisfying requirements

R1 and R3. The conjunction of supervised subplants and filters

Hfilt ,1‖ . . . ‖Hfilt ,k‖H1‖ . . . ‖Hq is then nonblocking.

Proof.

• By the procedure of Section 4.2, automata are incrementally abstracted and com-

posed. Assume the first two abstracted automata do not conflict. Therefore, H1,a‖H2,a

is nonblocking. Since Σrel(H1) ∩ Σrel(H2) ⊆ (Σ − Σh), H1,a‖H2,a 'conf H1‖H2 by

Proposition 4.5. Therefore, H1‖H2 is also nonblocking since conflict equivalence

preserves blocking properties.

• Assume the addition of a third automaton also does not cause conflict, then

(H1,a‖H2,a)a‖H3,a is nonblocking. Noting again that conflict equivalence holds across

synchronous composition when shared relevant events are not abstracted away,

(H1,a‖H2,a)a‖H3,a is conflict equivalent to H1,a‖H2,a‖H3. Since those events made

silent in the generation of H1,a and H2,a are not relevant to any of the remaining

subsystems, Proposition 4.5 provides that H1,a‖H2,a‖H3 'conf H1‖H2‖H3. Further-

more, since equivalence relations are transitive, (H1,a‖H2,a)a‖H3,a 'conf H1‖H2‖H3.

Therefore, H1‖H2‖H3 is also nonblocking.

• Assume for the first i1 automata addressed, where 1 ≤ i1 ≤ q, no conflict is

detected. Therefore, the resulting nested composition given below is nonblocking.

H ′
i1

= ((. . . ((H1,a‖H2,a)a‖H3,a)a‖ . . .)a‖Hi1−1,a)a‖Hi1,a (4.2)

72

Following the logic above, the expression in equation (4.2) is conflict equivalent to

H1‖H2‖ . . . ‖Hi1 . Therefore, H1‖H2‖ . . . ‖Hi1 is nonblocking since the expression in

equation (4.2) is.

• If i1 = q, then there are no filters and we are done. Otherwise, the filter Hfilt ,1 is

needed to resolve the conflict in H ′
i1,a‖Hi1+1,a, where H ′

i1,a is the further abstraction

of the expression in equation (4.2). By R1, Hfilt ,1‖H ′
i1,a‖Hi1+1,a is nonblocking. By

Proposition 4.5 and the above, H ′
i1,a‖Hi1+1,a is conflict equivalent to H1‖ . . . ‖Hi1+1.

Therefore, Hfilt ,1‖H ′
i1,a‖Hi1+1,a is conflict equivalent to Hfilt ,1‖H1‖ . . . ‖Hi1+1 by Propo-

sition 4.5 since no events in Σh at this point are relevant to Hfilt ,1 by R3. Therefore,

Hfilt ,1‖H1‖ . . . ‖Hi1+1 is nonblocking since Hfilt ,1‖H ′
i1,a‖Hi1+1,a is.

• Let automata Hi1+2,a through Hi2,a be added such that the following expression is

nonblocking, where i1 + 2 ≤ i2 ≤ q.

H ′
i2

= (. . . ((Hfilt ,1‖H ′
i1,a‖Hi1+1,a)a‖Hi1+2,a)a‖ . . .)a‖Hi2,a (4.3)

Following the logic employed above, it can then be shown that the expression in

equation (4.3) is conflict equivalent to Hfilt ,1‖H1‖ . . . ‖Hi1+1‖Hi1+2‖ . . . ‖Hi2 , which

is in turn nonblocking also.

• If i2 = q, then there are no more filters and we are done. Otherwise, the filter Hfilt ,2

is needed to resolve the conflict in the composition H ′
i2,a‖Hi2+1,a, where H ′

i2,a is the

further abstraction of the expression in equation (4.3). By R1, Hfilt ,2‖H ′
i2,a‖Hi2+1,a

is nonblocking. By Proposition 4.5 and the above, H ′
i2,a‖Hi2+1,a is conflict equiva-

lent to Hfilt ,1‖H1‖ . . . ‖Hi2 . Therefore, Hfilt ,2‖H ′
i2,a‖Hi2+1,a is conflict equivalent to

Hfilt ,2‖Hfilt ,1‖H1‖ . . . ‖Hi2 by Proposition 4.5 since no events in Σh at this point are

relevant to Hfilt ,2 by R3. Therefore, Hfilt ,2‖Hfilt ,1‖H1‖ . . . ‖Hi2 is nonblocking since

Hfilt ,2‖H ′
i2,a‖Hi1+2,a is.

• Repeating this process, supervised subsystems and filters are added to the compo-

sition until they have all been addressed. The resulting composition

Hfilt ,1‖ . . . ‖Hfilt ,k‖H1‖ . . . ‖Hq is, therefore, shown to be nonblocking.

4.3.2 Conflict-equivalence preserving rules

We now need to demonstrate that the control required of these filters is realizable.

For a deterministic control law, this corresponds to demonstrating the language

controllability condition of equation (2.1). In order to demonstrate this, we will

73

require that our conflict-equivalent abstraction satisfies the following property, where

Ph : Σ∗ → (Σ − Σh)
∗ is the natural projection that erases those events that have

been hidden.

Ph(L(H)) = Ph(L(Ha)) (4.4)

In words, we need that the original and reduced automata generate the same

projected languages. We will specifically demonstrate which rules of [19] [21] applied

in Step 2 of Algorithm 4.2 achieve the property required by equation (4.4). We must

first, however, introduce the following equivalence relation from [21]. This relation

is employed in some of the reduction rules to follow.

Definition 4.8. [21] Let G = (Q, Στ , δ, q0, Qm) be an automaton. The binary rela-

tion ∼inc⊆ Q×Q is defined such that q ∼inc q′ if:

q0
ε⇒ q ⇐⇒ q0

ε⇒ q′;

∀p ∈ Q and ∀σ ∈ Σ : p
σ⇒ q ⇐⇒ p

σ⇒ q′. ¦

The relation ∼inc defines two states as being equivalent if they are reached in the

same observed manner. In a sense, this relation is dual to observation equivalence

where states with the same observed future are equated. The following two rules

from [21] employ the relation ∼inc to identify conflict-equivalent states. Two states

are defined to be conflict equivalent if they have future behaviors that cannot be

distinguished by conflict equivalence. The reduction of the automaton model is then

achieved by merging conflict-equivalent states.

1) Active Events Rule: Two states that are equivalent with respect to ∼inc and

have the same set of active events are conflict equivalent. The active event set of a

state q is defined here to be those events σ ∈ Σ for which there exists a string t ∈ Σ∗
τ

such that δ(q, t)! and Pτ (t) = σ.

2) Silent Continuation Rule: Two states that are equivalent with respect to ∼inc

and from which states without outgoing τ transitions can be reached via a nonempty

sequence of τ transitions are conflict equivalent.

Observation-equivalence provides another rule for identifying conflict-equivalent

states since observation equivalence implies conflict equivalence [21].

3) Observation Equivalence Rule: Two states that are observation equivalent are

also conflict equivalent.

74

The requirement presented in equation (4.4) can now be demonstrated for au-

tomata abstracted by applying the Active Events Rule and the Silent Continuation

Rule based on their reliance on the binary relation ∼inc.

Proposition 4.9. Let there be two (possibly nondeterministic) automata H and Ha,

where H = (Q, Στ , δh, q0, Qm) and Ha is an abstraction generated by Algorithm 4.2.

If only the Active Events Rule and the Silent Continuation Rule are applied in the

process of abstraction, then Ph(L(Ha)) = Ph(L(H)), where Ph : Σ∗ → (Σ− Σh)
∗.

Proof.

• Following the first step of Algorithm 4.2, let H ′ = (Q, Στ , δ
′
h, q0, Qm) be the au-

tomaton generated by replacing those transitions of H that are in Σh by the silent

event τ . It is then apparent that:

Ph(L(H ′)) = Ph(L(H)) (4.5)

• Next, assume that Ha is generated from H ′ by first merging the single pair of

distinct states q, q′ ∈ Q, where q ∈ δ′h(q0, s), q′ ∈ δ′h(q0, s
′), and s, s′ ∈ Σ∗

τ . See

Fig. 4.2. Since it is assumed that equivalent states are identified by only the Active

Events Rule and the Silent Continuation Rule, we then have that q ∼inc q′.

• Let l ∈ Σ∗
τ be a string accepted by H ′. We now must show that Ph(Pτ (l)) ∈

Ph(L(H ′)) ⇔ Ph(Pτ (l)) ∈ Ph(L(Ha)).

(Case 1)

• Let l ∈ Σ∗
τ be a string accepted by H ′ such that l does not pass through either of

the states to be merged, that is, s, s′ � l. It logically follows that Pτ (l) ∈ L(H ′) ⇔
Pτ (l) ∈ L(Ha) and further that Ph(Pτ (l)) ∈ Ph(L(H ′)) ⇔ Ph(Pτ (l)) ∈ Ph(L(Ha)).

(Case 2)

• We will now examine all strings l, l′ ∈ Σ∗
τ accepted by H ′ that do pass through q

and q′ respectively. If l passes through the states q and q′ more than once, then let

s ≤ l be the prefix of l that last reaches q. Likewise, let s′ ≤ l′ be the prefix of l′

that last reaches q′.

• Therefore, let l = st where q ∈ δ(q0, s). Furthermore, @v ∈ Σ∗
τ − {ε} such that

sv ≤ l and q ∈ δ′h(q0, sv) or q′ ∈ δ′h(q0, sv). Likewise, let l′ = s′t′ where q′ ∈ δ(q0, s
′).

Also, @v ∈ Σ∗
τ − {ε} such that s′v ≤ l′ and q ∈ δ′h(q0, s

′v) or q′ ∈ δ′h(q0, s
′v).

• In the following we will examine the string l. To examine l′, the logic is the same

just with relabeling.

75

• (⊆) Merging q and q′ means that if the strings st and s′t′ are accepted by H ′,

then st, st′, s′t, and s′t′ are accepted by Ha (see Fig. 4.2). Furthermore, recall that

q ∼inc q′. Referring to Definition 4.8, this means that either Pτ (s) = Pτ (s
′) = ε, or

that s = ru and s′ = ru′ where p = δ′h(q0, r) and Pτ (u) = Pτ (u
′) = σ. In either case,

Pτ (s) = Pτ (s
′). It then follows that:

Pτ (st) = Pτ (s
′t) and Pτ (s

′t′) = Pτ (st
′) (4.6)

Therefore, Pτ (st), Pτ (s
′t′) ∈ L(H ′) ⇒ Pτ (st) = Pτ (s

′t), Pτ (s
′t′) = Pτ (st

′) ∈
L(Ha). Since l = st, this also means that Ph(Pτ (l)) ∈ Ph(L(H ′)) ⇒ Ph(Pτ (l)) ∈
Ph(L(Ha)).

• (⊇) Again by merging q and q′, we have that the strings st, st′, s′t, and s′t′

are accepted by Ha. This, therefore, implies that at least two elements of the

set {st, st′, s′t, s′t′} are accepted by H ′ where each of the strings s, s′, t, and t′

is used in at least one of the strings accepted from the set. Employing equation

(4.6) again, we then have that Pτ (st), Pτ (st
′), Pτ (s

′t), Pτ (s
′t′) ∈ L(Ha) ⇒ Pτ (st) =

Pτ (s
′t), Pτ (s

′t′) = Pτ (st
′) ∈ L(H ′). Also since l = st, Ph(Pτ (l)) ∈ Ph(L(Ha)) ⇒

Ph(Pτ (l)) ∈ Ph(L(H)).

• Taking Case 1 and Case 2 together, since it is true ∀l accepted by H ′ that

Ph(Pτ (l)) ∈ Ph(L(H ′)) ⇔ Ph(Pτ (l)) ∈ Ph(L(Ha)), we have that Ph(L(H ′)) =

P (L(Ha)) if a single pair of states have been merged.

• If we further abstract Ha by merging another pair of states that satisfy the bi-

nary relationship ∼inc, we can repeat the logic above. Therefore, we can show that

Ph(L(H ′)) = Ph(L(Ha)) in general. This in conjunction with equation (4.5), there-

fore, proves our ultimate desired result.

 H’ :

 q
 0

 q’

 q
 t

 t’

 s

 s’

 H :

 q
 0 q.q’

 t

 t’

 s

 s’

 a

Figure 4.2: Example of an abstraction using an equivalence relation

Similar logic to the above proposition can be employed to show that for two

observation equivalent automata H and Ha, equation (4.4) also holds. This fact is

noted by [64]. Other rules found in [19] can be derived based on Rules 1-3 mentioned

76

previously, therefore, they will also satisfy equation (4.4). In the EBCR approach,

we will only apply rules which derive from these three rules. If other rules that meet

equation (4.4) can be identified, then they can be employed in our application as

well.

Now recall that a reduced automaton Ha has replaced all hidden events with the

τ event then added self-loops at every state for each hidden event, therefore, none

of the events that have been made silent are relevant to Ha. This in turn means

that P−1
h (Ph(L(Ha))) = L(Ha). Here P−1

h is an inverse projection which expands

the alphabet from (Σ−Σh) to Σ. In terms of automata, P−1
h adds self loops at every

state for all events in Σh. This logic along with equation (4.4) then provides that:

P−1
h (Ph(L(H))) = P−1

h (Ph(L(Ha))) = L(Ha) ⊇ L(H)

Defining the languages marked by these automata as K = Lm(H) and Ka =

Lm(Ha) and assuming the automata are nonblocking, we then have that:

Ka ⊇ K (4.7)

A final reduction rule of [21], the certain conflicts rule, is not guaranteed to satisfy

the containment of equation (4.7). However, this rule is only relevant to blocking

automata and hence is not employed in our approach. The certain conflicts rule

could be modified to add self-loops for events that have not been hidden in order to

provide the containment of equation (4.7) without affecting conflict equivalence.

Repeated application of equation (4.7) can be used to generate the expression in

equation (4.8) where each Ki is either the marked language of a closed-loop module

or a coordinating filter. Below we will show a few steps of the logic that leads us to

equation (4.8).

Beginning with the expression K1 ∩K2 ∩ . . . ∩Kk−1 ∩Kk, equation (4.7) can be

used to show that K1,a ⊇ K1 and that K2,a ⊇ K2. Therefore,

K1,a ∩K2,a ∩K3 ∩ . . . ∩Kk−1 ∩Kk ⊇ K1 ∩K2 ∩K3 ∩ . . . ∩Kk−1 ∩Kk

Applying equation (4.7) again, we have that (K1,a∩K2,a)a ⊇ K1,a∩K2,a and that

K3,a ⊇ K3. Combining these results with the above expression, we then have that:

(K1,a ∩K2,a)a ∩K3,a ∩ . . . ∩Kk−1 ∩Kk ⊇ K1 ∩K2 ∩K3 ∩ . . . ∩Kk−1 ∩Kk

77

Continued repetition of the above logic then leads us to equation (4.8) that will

be employed in the proofs of the next section.

(((. . . (K1,a ∩K2,a)a ∩K3,a)a ∩ . . .)a ∩Kk−1,a)a ∩Kk,a ⊇ K1 ∩ . . . ∩Kk (4.8)

4.3.3 Controllability

Equation (4.8) and Propositions 3.3 and 3.4 defined earlier will help to demon-

strate that our filters acting in conjunction with the modular supervisors will be

language controllable with respect to the global uncontrolled plant language L. First

though, we need the following lemma that demonstrates language controllability for

the conjunction of a single filter and its associated blocking composition. This result

will then be applied repeatedly to show controllability of the conjunction of all mod-

ular supervisors and filters. We will denote the languages marked and generated by

the filters Hfilt ,j respectively as Kfilt ,j = Lm(Hfilt ,j) and Kfilt ,j = L(Hfilt ,j).

Lemma 4.10. Let Kfilt , K1, K2, . . ., Kk, and L ⊆ Σ∗ be languages and L be prefix-

closed. Let the subscript ‘a’ represent an abstraction satisfying Ka ⊇ K. Also let

Kfilt , K1, K2, . . ., Kk be a nonconflicting set. Let Σu ⊆ Σ be the set of uncontrollable

events. If Kfilt is language controllable with respect to L′a = (. . . (K1,a ∩ K2,a)a ∩
. . .)a ∩ Kk,a and K1, K2, . . ., Kk are each language controllable with respect to L,

then Kfilt ∩K1 ∩ . . . ∩Kk is language controllable with respect to L.

Proof.

• It is given that Kfilt is language controllable w.r.t. L′a:

KfiltΣu ∩ L′a ⊆ Kfilt

• Noting equation (4.8), intersection of both sides of the above with L′ = K1 ∩K2 ∩
. . . ∩Kk gives us that:

KfiltΣu ∩ L′ ⊆ Kfilt ∩ L′ (4.9)

• It is further given that K1, K2, . . ., Kk are each language controllable w.r.t. L.

Hence, L′Σu ∩ L ⊆ L′. This fact combined with equation (4.9) gives us that:

KfiltΣu ∩ (L′Σu ∩ L) ⊆ KfiltΣu ∩ L′ ⊆ Kfilt ∩ L′

and substituting the expression for L′ we get

(Kfilt ∩K1 ∩ . . . ∩Kk)Σu ∩ L ⊆ Kfilt ∩K1 ∩ . . . ∩Kk

78

• Also recalling that it is given that the set Kfilt , K1, K2, . . ., Kk is nonconflicting,

we have our desired result:

(Kfilt ∩K1 ∩ . . . ∩Kk)Σu ∩ L ⊆ Kfilt ∩K1 ∩ . . . ∩Kk

The following theorem provides the language controllability result for the global

system that we require.

Theorem 4.11. Let Ki = Lm(Hi) be the language representing the behavior of the

ith subplant L′i = L(G′
i) under the supervision of the ith modular supervisor where

i ∈ {1, . . . , q}. Furthermore, let there be filters Kfilt ,j , j ∈ {1, . . . , k}, constructed as

part of Algorithm 4.6 and satisfying requirements R1 and R2. The conjunction of

supervised languages and filters Kfilt ,1 ∩ . . . ∩Kfilt ,k ∩K1 ∩ . . . ∩Kq is then language

controllable with respect to the global uncontrolled plant L = L(G) = L′1 ∩ . . . ∩ L′q.

Proof.

• Each supervised language Ki is language controllable with respect to its associated

subplant L′i by construction. Since L ⊆ L′i for each local subplant, each closed-

loop language is also language controllable with respect to the global plant L by

Proposition 3.3.

• Let the set K1, . . . , Ki1 be nonconflicting, where 1 ≤ i1 ≤ q. Since each Ki is

language controllable with respect to L, K1 ∩ . . . ∩Ki1 is also language controllable

with respect to L by Proposition 3.4.

• If i1 = q, then there are no filters and we are done. Otherwise, the filter Kfilt ,1

is needed to resolve the conflict in the composition K ′
i1,a ∩ Ki1+1,a, where K ′

i1,a =

((. . . (K1,a∩K2,a)a∩. . .)a∩Ki1,a)a. By R1 and Theorem 4.7, the set Kfilt ,1 , K1, . . . , Ki1+1

is nonconflicting. Also by R2, Kfilt ,1 is language controllable with respect to K ′
i1,a ∩

Ki1+1,a, where K ′
i1,a = ((. . . (K1,a ∩K2,a)a ∩ . . .)a ∩Ki1,a)a. Therefore, Kfilt ,1 ∩K1 ∩

. . . ∩Ki1+1 is language controllable with respect to L by Lemma 4.10.

• Let Ki1+2, . . . , Ki2 be chosen such that the set Kfilt ,1 , K1, . . . , Ki1+1, Ki1+2, . . . , Ki2

is nonconflicting, where i1 + 2 ≤ i2 ≤ q. Also, since Kfilt ,1 ∩ K1 ∩ . . . ∩ Ki1+1 and

each Ki is language controllable with respect to L, Proposition 3.4 provides that

Kfilt ,1 ∩K1 ∩ . . . ∩Ki2 is language controllable with respect to L.

• If i2 = q, then there are no more filters and we are done. Otherwise, the filter

Kfilt ,2 is needed to resolve the conflict in the composition K ′
i2,a ∩ Ki2+1,a, where

79

K ′
i2,a = ((. . . (Kfilt ,1 ,a ∩ K ′

i1,a)a ∩ Ki1+2,a . . .)a ∩ Ki2,a)a. By R1 and Theorem 4.7,

the set Kfilt ,2 , Kfilt ,1 , K1, . . . , Ki2+1 is nonconflicting. Also by R2, Kfilt ,2 is language

controllable with respect to K ′
i2,a ∩ Ki2+1,a, where K ′

i2,a = ((. . . (Kfilt ,1 ,a ∩ K ′
i1,a)a ∩

Ki1+2,a . . .)a∩Ki2,a)a. Hence, Kfilt ,1 ∩Kfilt ,2 ∩K1∩ . . .∩Ki2+1 is language controllable

with respect to L by Lemma 4.10.

• Repeating this logic, supervised modules and filters are added to the composition

until they have all been addressed. The resulting composition Kfilt ,1 ∩ . . . ∩Kfilt ,k ∩
K1 ∩ . . .∩Kq is, therefore, shown to be language controllable with respect to L.

Theorem 4.7 and Theorem 4.11 therefore provide the desired result that determin-

istic filter laws built to satisfy requirements R1, R2, and R3 provide safe, nonblocking

control when acting in conjunction with the modular supervisors.

4.3.4 Supervisor reduction

A further improvement over Algorithm 4.6 presented in Section 4.2 is that in

some instances a closed-loop module Hi can be replaced by a reduction in the sense

of [66], prior to the module being abstracted using a conflict-equivalent abstraction.

For a plant G′
i and supervisor automaton Si, [66] shows how to generate a reduced

supervisor Ci that provides the same behavior as Si when acting on the given plant,

that is, Ci‖G′
i = Si‖G′

i.

In our procedure, we propose that a closed-loop module Hi = Si‖G′
i can be re-

placed by the reduced supervisor Ci if the components making up the associated

plant G′
i are included in other plant modules {G′

j|j < i} that have already been ad-

dressed; here it is assumed the modules are addressed in numerical order. Otherwise

stated, Ji ⊆ ∪j<iJj, where Jk is the set of indices of subplants in the composition that

produces G′
k. The following proposition formalizes this idea for a situation involving

three closed-loop modules and a single filter. Figure 4.3 can be referenced to help

visualize the result. In the following, each of the closed-loop modules Hi = Si‖G′
i

are supervised such that they satisfy the corresponding specification Ei. The corre-

sponding subplants are defined as G′
1 = G1‖G2, G′

2 = G3‖G4, and G′
3 = G2‖G3.

Proposition 4.12. Let H1, H2, and H3 be deterministic closed-loop modules. Let

C3 be the reduction constructed in the manner of [66] corresponding to the module

H3 = S3‖G′
3 where S3 and G′

3 are respectively the deterministic supervisor and plant.

Also, let Hfilt ,1 be a filter automaton constructed to satisfy requirements R1 and R3

80

G
1

G
2 G

3
G

4E1 E2E3

H
1

H
2

H
3

Figure 4.3: Three specification example for demonstrating supervisor reduction

with respect to the blocking composition (H1,a‖H2,a)a‖C3,a. If L(H1‖H2) ⊆ L(G′
3),

then Hfilt ,1‖(H1,a‖H2,a)a‖C3,a 'conf Hfilt ,1‖H1‖H2‖H3.

Proof.

• Since requirements R1 and R3 are given, the logic of Theorem 4.7 can be employed

to show that

Hfilt ,1‖(H1,a‖H2,a)a‖C3,a 'conf Hfilt ,1‖H1‖H2‖C3 (4.10)

• Since it is given that L(H1‖H2) ⊆ L(G′
3) and the involved automata models are

deterministic, we have that H1‖H2 = H1‖H2‖G′
3.

• Therefore,

Hfilt ,1‖H1‖H2‖C3 = Hfilt ,1‖H1‖H2‖G′
3‖C3 (4.11)

• Since C3 is a reduced supervisor of S3, we further have that H3 = S3‖G′
3 = C3‖G′

3.

Therefore,

Hfilt ,1‖H1‖H2‖G′
3‖C3 = Hfilt ,1‖H1‖H2‖H3 (4.12)

• Since equality implies conflict equivalence, by equations (4.10), (4.11), and (4.12)

we have the desired result that

Hfilt ,1‖(H1,a‖H2,a)a‖C3,a 'conf Hfilt ,1‖H1‖H2‖H3

The idea of employing supervisor reduction in conflict resolution was first em-

ployed by [16] in constructing a different sort of conflict-resolving coordinator. The

real advantage of this result is that since the relevant event set of Ci is smaller

than the relevant event set of Hi, more reduction can take place in generating the

conflict-equivalent abstractions of the preceding Hj.

81

4.4 State-Based Filter Requirements

In this section we will propose a new set of state-based requirements that are

analogous to the language-based requirements of Section 4.3 (R1-R3). These new

requirements are necessary because of the nondeterminism introduced into our mod-

els by the process of abstraction. The language-based requirements are not sufficient

to guarantee safe, nonblocking control when applied to nondeterministic filter au-

tomata.

4.4.1 Supervisory control in the presence of nondeterminism

A difficulty that arises in considering how to construct filters is that each blocking

composition Bj,a is possibly nondeterministic because of the abstraction employed.

Determinization is not appropriate in this instance because it can change the blocking

properties of the automaton model. In addition, it can result in a new model with

a state space that is exponentially larger than the original nondeterministic model.

To avoid the determinization process, we need to specify a set of requirements and

a filter construction algorithm that addresses nondeterminism.

An alternate way to think about our problem is that each blocking composition

Bj,a is like our uncontrolled plant and we are trying to build a supervisor (the fil-

ter Hfilt ,j) to achieve a specification in a nonblocking manner. If we consider our

specification to be the language Σ∗, then we have a situation where the “plant” is

nondeterministic and the “specification” is deterministic. Of the existing research on

supervisory control in the presence of nondeterminism, some address the situation

where either only the plant is nondeterministic [36] [53] or only the specification

is nondeterministic [13]. Still other research allows the supervisors to be nonde-

terministic but only in application to partially observed deterministic plants and

deterministic specifications [31] [35]. The works applicable to our situation [36] [53]

demonstrate conditions for supervisor existence, but do not provide a supervisor

construction algorithm.

Another, perhaps more intuitive, way to think about our situation is to consider

our specification to be the trim of Bj,a. Therefore, we have a situation where our

“plant” and “specification” are both nondeterministic. Research that addresses this

situation is presented in [24] [52] [81]. The work of [52] only addresses deadlock

avoidance and its construction algorithm for building supervisors has exponential

82

complexity. In the work of [81], conditions are presented under which a supervisor

exists that can achieve behavior that is bisimilar to the given specification. A lim-

itation of [81] is that supervisor synthesis is not addressed other than to mention

that a search can be performed over the cartesian product of the plant and speci-

fication state spaces. The work of [24] handles the situation of a nondeterministic

plant and specification by converting the models to partially observed deterministic

ones. At this point, traditional techniques for control under partial observation can

be applied. This approach could be applied to our situation, but we hope to avoid

the conversion process and the exponential complexity of the traditional techniques.

As existing works do not provide a methodology for constructing the filters re-

quired by Algorithm 4.6 with less than exponential complexity, we will propose our

own approach for constructing deterministic filter laws that meet the requirements

R1, R2, and R3. We will represent these deterministic control laws by possibly

nondeterministic automata in order to keep the representation compact and in or-

der to avoid determinizing the model. One problem that arises is that language

controllability is insufficient to assess the realizability of a control law in regards to

nondeterministic automata, as demonstrated by the following example.

Example 4.13. Consider the automata in Fig. 4.4 where G is the plant and H is the

specification and event b is uncontrollable. Since the string ab is in L(G) as well as in

L(H), L(H) is language controllable with respect to L(G). However, the automaton

H still requires that the uncontrollable event b be disabled at state 2. ¦

 b a

 H :

 c

 0

 1 2

 3

 a

 b a

 G :

 c b

 0

 1 2

 3 4

 a

Figure 4.4: State controllability example

4.4.2 State controllability and observability

One solution to address the limitation of language controllability with respect to

nondeterministic automata is to require a state controllability property similar to

83

what was done in [13] and [81]. Language controllability requires that following an

observed string s, if there is an uncontrollable continuation σ allowed in the plant

automaton, then at least one instance of σ must be allowed following a string with

the same observation s. With the state controllability property of [13] and [81], it

is rather required that the continuation σ be allowed following every string with the

observation s. In the case of subautomata as defined below, we can apply a slightly

weaker notion of state controllability.

Definition 4.14. H = (Qh, Στ , δh, q0h, Qmh) is a subautomaton of

G = (Qg, Στ , δg, q0g, Qmg) denoted H v G if and only if

Qh ⊆ Qg, q0h = q0g, Qmh = Qmg ∩Qh and

p ∈ δh(q, σ) ⇒ p ∈ δg(q, σ). ¦

The idea of this weaker notion is that following a string with an observation s,

we will require that an instance of an uncontrollable event σ must be allowed only

if the event σ is possible in that particular state of the plant automaton. That is, if

there is a string with an observation s that leads to a state in the plant automaton

where σ is not possible, then σ does not have to be enabled at that state. Both state

controllability properties imply language controllability. We will now formally define

our state controllability property for a subautomaton.

Definition 4.15. Let Σu ⊆ Στ with τ ∈ Σu. Subautomaton H of G is state control-

lable in G if

∀s for which δh(q0, s)! and ∀q ∈ δh(q0, s) and ∀σ ∈ Σu, p ∈ δg(q, σ) ⇒ p ∈ δh(q, σ) ¦

State controllability as a property, however, is not sufficient to provide that the

subautomaton H represents a deterministic control law with respect to G. If the

same observed string leads to two different states, those two states could require

conflicting control actions. As such, we need a new observability-type requirement.

Definition 4.16. Let Σc ⊆ Σ. Subautomaton H of G is state observable in G with

respect to the event set Σc if

∀s for which δh(q0, s)! and ∀q ∈ δh(q0, s) and ∀σ ∈ Σc,

Pτ (s)σ ∈ L(H) and p ∈ δg(q, σ) ⇒ p ∈ δh(q, σ) ¦

84

Taken together, state controllability and state observability provide that H rep-

resents a deterministic control law with respect to G. This is demonstrated formally

by the following theorem that shows that a deterministic automaton Hobs that gen-

erates and marks the same languages as H will produce a result that is bisimulation

equivalent to H when it is composed with G. In essence, Hobs can be considered

a deterministic supervisor that achieves the specification represented by the nonde-

terministic automaton H for the nondeterministic plant model G. Similar results

for generating control for bisimulation equivalence can be found in [47] [55] [67], but

none demonstrate the following specific result. Here we implicitly assume the states

of the automata are reachable.

Theorem 4.17. Let H = (Qh, Στ , δh, q0, Qmh) and G = (Qg, Στ , δg, q0, Qmg) be

(possibly nondeterministic) automata such that H v G and H is state control-

lable and state observable in G. Also let Στ = Σc∪̇Σu where τ ∈ Σu. If Hobs =

(Qho, Στ , δho, p0, Qmho) is a deterministic automaton for which L(Hobs) = L(H) and

Lm(Hobs) = Lm(H), then the synchronous composition Hobs‖G =

(Q‖, Στ , δ‖, (p0, q0), Qm‖) is bisimulation equivalent to H.

Proof.

• Since H v G, Definition 4.14 implies that L(H) ⊆ L(G). Also, since L(H) =

L(Hobs), L(Hobs‖G) = L(Hobs) ∩ L(G) = L(H).

• Therefore, Hobs‖G and H are equivalent in terms of the languages they generate.

We will show in the following, however, that they are also bisimulation equivalent.

• If H is the empty automaton, then so is Hobs‖G since their generated languages are

both empty. Otherwise, Hobs‖G and H can be shown to be bisimulation equivalent by

demonstrating that their initial states are bisimulation equivalent. That is, (p0, q0) ∼
q0 in the sense of Definition 2.7.

• Specifically, we need to demonstrate Points (i)−(iii) of Definition 2.7 for the initial

states. In words, Point (i) means that if an event takes the state (p0, q0) to the state

(p1, q1) ∈ Q‖, then the same event must take q0 to a state q1 ∈ Qh that is bisimulation

equivalent to (p1, q1), that is, (p1, q1) ∼ q1. Point (ii) likewise means that if an event

takes the state q0 to the state q1 ∈ Qh, then the same event must take (p0, q0) to

a state (p1, q1) ∈ Q‖ that is bisimulation equivalent to q1, (p1, q1) ∼ q1. Point (iii)

further requires that (p0, q0) and q0 have the same marking.

• Since the bisimulation equivalence of (p0, q0) and q0 depends on the bisimulation

85

equivalence of states subsequently reached by the same strings, we will perform this

proof iteratively.

• (Point i) Let σ1 ∈ Στ . We need to show that (p1, q1) ∈ δ‖((p0, q0), σ1) implies

that q1 ∈ δh(q0, σ1). Assuming (p1, q1) ∈ δ‖((p0, q0), σ1), p1 = δho(p0, σ1) and q1 ∈
δg(q0, σ1) by Definition 2.1. The following then shows that q1 ∈ δh(q0, σ1):

- If σ1 ∈ Σu, then q1 ∈ δh(q0, σ1) since q1 ∈ δg(q0, σ1) and H is state

controllable in G.

- If σ1 ∈ Σc, then σ1 ∈ L(H) since σ1 ∈ L(Hobs‖G) = L(Hobs). Since it

is also known that q1 ∈ δg(q0, σ1) and H is state observable in G, we then

have that q1 ∈ δh(q0, σ1).

• (Point ii) Now we need to show that q1 ∈ δh(q0, σ1) implies (p1, q1) ∈ δ‖((p0, q0), σ1).

Since H v G, q1 ∈ δh(q0, σ1) implies q1 ∈ δg(q0, σ1) by Definition 4.14. If σ1 = τ ,

then Definition 2.1 provides that (p0, q1) ∈ δ‖((p0, q0), σ1) and we can let (p1, q1) =

(p0, q1). If σ1 ∈ Στ − {τ}, then σ1 ∈ L(H) = L(Hobs). Since Hobs is deterministic,

we then have that δho(p0, σ1) has a single element that we will call p1. Therefore,

(p1, q1) ∈ δ‖((p0, q0), σ1) again by Definition 2.1.

• (Point iii) We now need to show that q0 ∈ Qmh if and only if (p0, q0) ∈ Qm‖.

(⇒) Let q0 ∈ Qmh. Definition 4.14 then implies that q0 ∈ Qmg. Additionally, since

Lm(H) = Lm(Hobs), ε ∈ Lm(H) implies that ε ∈ Lm(Hobs) and thus p0 ∈ Qmho.

Therefore, by Definition 2.1 (p0, q0) ∈ Qm‖.

(⇐) Let (p0, q0) ∈ Qm‖. This implies that q0 ∈ Qmg by Definition 2.1 which in turn

implies that q0 ∈ Qmh by Definition 4.14 since we already have that q0 ∈ Qh.

• The above logic holds for any σ1 ∈ Στ for which δ‖((p0, q0), σ1) or δh(q0, σ1) is

nonempty.

• In order to complete the proof that (p0, q0) ∼ q0, we then need that (p1, q1) ∼ q1.

This can be demonstrated by following logic similar to that given above.

• (Point i) Let σ2 ∈ Στ . We need to show that (p2, q2) ∈ δ‖((p1, q1), σ2) implies

that q2 ∈ δh(q1, σ2). Assuming (p2, q2) ∈ δ‖((p1, q1), σ2), p2 = δho(p1, σ2) and q2 ∈
δg(q1, σ2) by Definition 2.1. The following then shows that q2 ∈ δh(q1, σ2):

- If σ2 ∈ Σu, then q2 ∈ δh(q1, σ2) since q2 ∈ δg(q1, σ2) and H is state

controllable in G.

- If σ2 ∈ Σc, then Pτ (σ1)σ2 ∈ L(H) since Pτ (σ1)σ2 ∈ L(Hobs‖G) = L(Hobs).

86

Since it is also known that q2 ∈ δg(q1, σ2) and H is state observable in G,

we then have that q2 ∈ δh(q1, σ2).

• (Point ii) Now we need to show that q2 ∈ δh(q1, σ2) implies (p2, q2) ∈ δ‖((p1, q1), σ2).

Since H v G, q2 ∈ δh(q1, σ2) implies q2 ∈ δg(q1, σ2) by Definition 4.14. If σ2 = τ , then

Definition 2.1 provides that (p1, q2) ∈ δ‖((p1, q1), σ2) and we can let (p2, q2) = (p1, q2).

If σ2 ∈ Στ − {τ}, then Pτ (σ1)σ2 ∈ L(H) = L(Hobs). Since Hobs is deterministic,

we then have that δho(p1, σ2) has a single element that we will call p2. Therefore,

(p2, q2) ∈ δ‖((p1, q1), σ2) again by Definition 2.1.

• (Point iii) We now need to show that q1 ∈ Qmh if and only if (p1, q1) ∈ Qm‖.

(⇒) Let q1 ∈ Qmh. Definition 4.14 then implies that q1 ∈ Qmg. Additionally, since

Lm(H) = Lm(Hobs), Pτ (σ1) ∈ Lm(H) implies that Pτ (σ1) ∈ Lm(Hobs) and thus

p1 ∈ Qmho. Therefore, by Definition 2.1 (p1, q1) ∈ Qm‖.

(⇐) Let (p1, q1) ∈ Qm‖. This implies that q1 ∈ Qmg by Definition 2.1 which in turn

implies that q1 ∈ Qmh by Definition 4.14 since we already have that q1 ∈ Qh.

• The above logic holds for any σ2 ∈ Στ for which δ‖((p1, q1), σ2) or δh(q1, σ2) is

nonempty.

• In order to complete the proof that (p1, q1) ∼ q1, we then need that (p2, q2) ∼ q2.

This can be demonstrated by following logic similar to that given above. In general,

this logic can be repeated for all reachable states of Hobs‖G or H.

• Therefore, (p0, q0) ∼ q0 and hence, Hobs‖G is bisimulation equivalent to H.

4.4.3 State-based requirements

The above theorem allows our filters to now be represented by possibly nonde-

terministic automata models, Hfilt ,j . More specifically, it allows us to replace the

language-based requirements of Section 4.3 with the following set of state-based re-

quirements:

State-based filter requirements

R1′) Hfilt ,j is a nonblocking subautomaton of Bj,a

R2′) Hfilt ,j is state controllable and state observable in Bj,a

R3′) Σ(Hfilt ,j) ∩ Σh = ∅
These results imply that a determinized version of the automaton Hfilt ,j , which

we will denote Hfilt ,j ,obs , will meet the previously established requirements R1, R2,

87

and R3. Specifically, conditions R1′ and R2′ together with Theorem 4.17 imply that

Hfilt ,j ,obs‖Bj,a is nonblocking since it is bisimulation equivalent to Hfilt ,j . Therefore,

requirement R1 is satisfied. Furthermore, since Hfilt ,j is state controllable, the gener-

ated language L(Hfilt ,j) is language controllable. This then implies that L(Hfilt ,j ,obs)

is also language controllable, thereby satisfying requirement R2. Also, R3′ are R3

are equivalent.

Thus far we have demonstrated that determinized versions of the filter automata

Hfilt ,j meeting requirements R1′, R2′, and R3′ will provide safe, nonblocking control

when acting in conjunction with traditionally built modular supervisors. However,

we would like to avoid the determinization process. Since the nondeterministic filter

automata Hfilt ,j possesses all the information that Hfilt ,j ,obs does, it turns out that

Hfilt ,j ,obs never actually has to be constructed. However, the control required by the

automaton Hfilt ,j cannot be implemented via the synchronous composition operation.

Rather, following the observation of a string s ∈ Σ∗, all continuations active at all

states reached by strings with the same observation must be allowed. In essence, we

are using Hfilt ,j and its transition function δfilt to generate an online implementation

of Hfilt ,j ,obs . Consider the following mathematical definition of the filter law Hfilt ,j :

L(Bj,a) → 2Σ that determines which events are to be enabled.

Hfilt ,j (s) :=
⋃

q∈T (s)

ΣHfilt
(q), where T (s) = {q | q ∈ δfilt(q0, t) and t ∈ P−1

τ (s)} (4.13)

In order to make this more clear, consider the automaton Ga in Fig. 4.1. If we

consider Ga to be a nondeterministic representation of a deterministic control law,

then following an observation of the string ab we do not know if we are in state

3 or state 4, therefore, we have to allow both event c and event d to occur. The

result of Theorem 4.17 also allows the composition Hfilt ,j ,obs‖Bj,a to be replaced by

the subautomaton Hfilt ,j in the course of Algorithm 4.6.

4.5 Filter Law Construction

Having established that we can employ filter laws represented by nondetermin-

istic automata, the final question that remains is how to construct Hfilt ,j so that

requirements R1′, R2′, and R3′ are satisfied. Since we are ultimately trying to find a

subautomaton, we are in essence trying to solve a state avoidance problem. This type

of problem can be solved by a state-feedback approach to control. In other words,

88

the control applied depends only on the state the system is in, not on the path taken

to get there. It is well-established that a static control law of this type is potentially

more restrictive than a dynamic control law in the case of partial observation [34].

However, we are willing to make this sacrifice in order to avoid exponential com-

plexity. In this section we introduce some existing results on state-based approaches

to control that can be employed to generate the conflict-resolving filters required by

the approach of this paper. Additionally, we develop an improved covering-based

approach to control that is less restrictive than existing state-feedback approaches.

4.5.1 State-based supervisory control

A state-feedback supervisory controller is a function f : Qg → 2Σ that determines

the set of events to be enabled based on the current state of the system under control

G = (Qg, Στ , δg, q0, Qmg). In the context of our larger approach to conflict resolu-

tion, the “plant” G represents a given blocking composition Bj,a. The closed-loop

system f/G then represents the allowable set of states, that is, the subautomaton

representing the coordinating filter Hfilt ,j . If G is equal to the empty automaton,

then so is f/G. Otherwise, f/G is defined iteratively as that portion of G that is

reachable via transitions that are allowed by f :

Definition 4.18.

f/G = (Qf , Στ , δf , q0, Qmf) (4.14)

Iterative Definition of f/G:

Step 1: q0 ∈ Qf .

Step 2: If q ∈ Qf and δg(q, σ)! for some σ ∈ f(q), then q′ ∈ Qf , ∀q′ ∈ δg(q, σ). Also,

δf (q, σ) = δg(q, σ). Otherwise, δf (q, σ) is empty.

Step 3: Every state in Qf and every transition for which δf is nonempty is obtained

as in Step 1 and Step 2. Also, Qmf = Qf ∩Qmg. ¦

Note from the above definition that all of the states of f/G are reachable and in-

herit their marking from G. The existence of a state-feedback controller that can keep

the behavior of G within a set of “good” states represented by the subset Qh ⊆ Qg

requires a property called Σu-invariance [56]. In terms of nondeterministic automata

and the notation of this paper, Σu-invariance of a state set Qh ⊆ Qg is equivalent

to the state controllability of a subautomaton of G, H = (Qh, Στ , δh, q0, Qmh). If

89

the state space of G is not fully observable, then additional considerations must be

addressed.

In existing work on state-feedback control under partial observation, the concept

of a “mask” is employed. A mask M is defined as a function M : Qg → Y that

maps elements from the state space Qg to the observation space Y . Under partial

observation two states q and q′ might not be distinguishable, that is, they could have

the same observation M(q) = M(q′) = y. It is then necessary that the state-feedback

control f(q) be determined based on M(q). Specifically, it is required that:

For any q, q′ ∈ Qg,M(q) = M(q′) ⇒ f(q) = f(q′) (4.15)

In existing state-feedback work [43] [69] it is assumed the mask M is given. In this

paper we will assume the mask M is constructed to satisfy the following constraint.

The mask M : Qg → Y is defined such that if ∃s, s′ ∈ Σ∗
τ with

q ∈ δg(q0, s), q′ ∈ δg(q0, s
′) and Pτ (s) = Pτ (s

′), then M(q) = M(q′). (4.16)

In the above, states q ∈ δg(q0, s) and q′ ∈ δg(q0, s
′) for which Pτ (s) = Pτ (s

′) are

defined to be indistinguishable. In other words, two states that are reached by strings

that have the same projection are indistinguishable and the mask M is constructed

such that all indistinguishable states map to the same observation under M .

Of the existing work for generating state-feedback control under partial observa-

tion, the least restrictive control strategy is proposed in [69] and builds off the prior

results of [68] and [70]. We will now outline their strategy using notation consistent

with this paper and extensions we have added to handle nondeterminism. Specif-

ically, [69] presents an algorithm for constructing a state-feedback controller that

satisfies equation (4.15). This algorithm is based on the following sets AH(q) ⊆ Σc

that define which events must be disabled at state q for a set of allowable states repre-

sented by the subautomaton H v G. In essence, the sets AH(q) capture which events

at a given state will cause a violation of the observability-type property captured by

equation (4.15).

AH(q) = {σ ∈ Σc | (∃q′ ∈ Qh) : [M(q) = M(q′)] ∧ [∃p ∈ δg(q
′, σ) such that p /∈ Qh]}

(4.17)

In the above equation, AH(q) is also defined for q′ = q since a state is always

considered indistinguishable from itself, that is, M(q) = M(q). The resulting state-

90

feedback control law is thus defined:

f(q) = Στ − AH(q) (4.18)

In order to guarantee that the control law defined by equation (4.18) is able to

achieve the specification required by the subautomaton H, [69] requires the following

property in addition to Σu-invariance:

Qh ⊆ R(Qh) (4.19)

In the above, R is a transformation that represents which states of H are reachable

by permissable transitions, that is, those transitions that are not prohibited by the

sets AH(q). Recall, the sets AH(q) enforce the observability-type requirement pre-

scribed in equation (4.15). If Qh = ∅, then R(Qh) = ∅. Otherwise, the set of states

represented by R(Qh) can be constructed iteratively in a similar manner to [69]:

Algorithm 4.19. R(Qh) Construction

Step 1: q0 ∈ R(Qh).

Step 2: If q ∈ R(Qh) and δg(q, σ) ⊆ Qh for some σ ∈ Στ − AH(q), then q′ ∈
R(Qh) ∀q′ ∈ δg(q, σ).

Step 3: Every state satisfying R(Qh) is obtained as in Step 1 and Step 2. ¦

A specification represented by the set of states Qh that is Σu-invariant and satis-

fies equation (4.19) is defined to be M-controllable in [70]. The work of [70] further

demonstrates that a state-feedback controller that can achieve the behavior pre-

scribed by the state set Qh exists if and only if the state set is M -controllable. In

particular, the control law given by equation (4.18) will achieve the M -controllable

state set Qh and is further the supremal state-feedback control law that satisfies

equation (4.15).

If a given state set is not M -controllable, then [69] prescribes an approach for

finding an M -controllable subset, R(Q↑
h). Here the ↑ operation generates the supre-

mal Σu-invariant subset of states constructed according to [56]. While the resulting

R(Q↑
h) is not necessarily maximal or supremal, it does represent a larger state set

than can be achieved by other existing state-feedback approaches [43] [68].

The subautomaton that results from the state-feedback controller of [69] can be

shown to be state controllable and state observable in G. Therefore, the results given

91

above could be directly applied to the construction of filters required by our approach

to conflict resolution. In the next section, however, we will propose an improved

covering-based approach that generates a more permissive control law than [69].

4.5.2 Covering-based supervisory control

Our improvement over [69] derives from the fact that the requirement of equation

(4.15) is stronger than necessary for the achievement of state observability. Therefore,

we can apply a new covering-based approach that will result in a less restrictive

control law. In this section we will additionally address blocking.

The observability-type requirement of equation (4.15) is too strong based on the

character of the mask M . The fact that M is a function implies that when the

state space is observed through this mask it is effectively partitioned into disjoint

sets of states that have the same observation. For example, if q and q′ have the

same observation M(q) = M(q′), and q′ and q′′ have the same observation M(q′) =

M(q′′), it then follows that q and q′′ must have the same observation M(q) = M(q′′).

Therefore, all three states q, q′, and q′′ must be in the same partition of the state

space. For achievement of state observability, however, it may not be necessary that

the same control action be applied at q and q′′ if they are not indistinguishable.

In other words, if the observed string that reaches q and q′ is different than the

observed string that reaches q′ and q′′, then the control applied at q and q′′ may be

allowed to be different. Figure 4.5 illustrates this situation where σ is disabled at q′′,

but need not be disabled at q since these states are not both reached by the same

observed string. In essence, we would like to base our control on a covering of the

state space rather than a partition like that imposed by the mask M . If the event σ

was possible at the state q′, then σ would need to be disabled at all three states for

our covering-based approach too.

 0

 u

 q

 q

 q

 q

,

 ,, v

 u,v

 s

 s

Figure 4.5: Example of a covering for indistinguishable states

92

In order to present out covering-based approach, we will employ the mapping IH

defined as follows:

Definition 4.20. Let IH : Qh → 2Qh be a mapping defined ∀q, q′ ∈ Qh as follows:

q′ ∈ IH(q) if q and q′ are indistinguishable, that is, if ∃s, s′ ∈ Στ such that q ∈
δh(q0, s), q′ ∈ δh(q0, s

′), and Pτ (s) = Pτ (s
′). ¦

In the above, it is always the case that a state q is considered indistinguishable

from itself, that is, q ∈ IH(q).

We can then define new sets of prohibited events, A′
H(q) ⊆ Σc. At a state q in the

uncontrolled plant G, a controllable transition σ that is defined in the uncontrolled

plant G is prohibited if it leads to a state outside of Qh or if it is prohibited at a

state q′ that is indistinguishable from q in H.

Since the definition of prohibited events at a state q, A′
H(q), depends on the

prohibited events of other states, each set A′
H(q) is constructed iteratively. In words,

if there is a string of indistinguishable states defined:

q ∈ IH(q′), q′ ∈ IH(q′′), . . . , q(m−1) ∈ IH(q(m))

each with σ possible in G and such that σ is not possible in H at q(m), then σ is again

added to A′
H(q). This construction indicates a transitivity similar to that imposed

by M , except that here the transitivity is limited to indistinguishable states where

σ is possible in G. Assuming the mapping IH is given, A′
H(q) can be constructed

according to Algorithm 4.21 given below. The mapping IH can be constructed with

polynomial complexity using results from [71].

Algorithm 4.21. Prohibited Events Determination

Input: automaton G, subautomaton H v G and mapping IH : Qh → 2Qh

For each q ∈ Qh

For each transition σ ∈ ΣG(q) ∩ Σc

If ∃p ∈ δg(q, σ) such that p /∈ δh(q, σ) then

add σ to the set of prohibited events at q, A′
H(q) ← {σ} ∪ A′

H(q).

End if

If σ ∈ A′
H(q) then

93

define a set of states T that is initialized with the state q, T ← {q}.

Also let M : Qh → {0, 1} be a partial function marking whether

or not states in the set T have been addressed yet. Set M(q) = 0.

For each q′ ∈ T with M(q′) = 0

For each q′′ ∈ IH(q′) that is not in T

If δg(q
′′, σ)! then

add state q′′ to the set T , T ← {q′′} ∪ T , and add event σ

to the set of prohibited events at q′′, A′
H(q′′) ← {σ} ∪ A′

H(q′′).

Set M(q′′) = 0.

End if

End for

Set M(q′) = 1.

End for

Clear T and M.

End if

End for

End for

Output: the sets A′
H(q) ¦

Algorithm 4.21 has complexity O(mn2) where m is the cardinality of the event

set and n is the cardinality of the state space. Assuming the subautomaton H has

a finite number of transitions, this algorithm will terminate in finite time. The sets

A′
H(q) defined by Algorithm 4.21 satisfy the following equation by construction:

A′
H(q) = {σ ∈ Σc | (δg(q, σ)! ∧ ∃q′ ∈ Qh) : [q′ ∈ IH(q)] ∧

{[∃p ∈ δg(q
′, σ) such that p /∈ Qh] ∨ [σ ∈ A′

H(q′)]}} (4.20)

In order to explicitly compare the sets AH(q) and A′
H(q), we now define the

following mapping JH that reflects the partition implicitly imposed by a given mask

94

M on the state set Qh:

Definition 4.22. Let JH : Qh → 2Qh be a mapping defined ∀q, q′ ∈ Qh as follows:

q′ ∈ JH(q) if M(q) = M(q′). ¦

The definition of AH(q) given in equation (4.17) can then be rewritten in terms

of the mapping JH as follows:

AH(q) = {σ ∈ Σc | (∃q′ ∈ Qh) : [q′ ∈ JH(q)] ∧ [∃p ∈ δg(q
′, σ) such that p /∈ Qh]}

(4.21)

Examining equations (4.20) and (4.21), σ can be an element of AH(q) when δg(q, σ)

is empty, while it cannot be an element of A′
H(q). Furthermore, since the mapping

JH imparts a partition on the state space Qh, AH(q) = AH(q′) if q′ ∈ JH(q). These

observations along with the fact that IH(q) ⊆ JH(q) then implies that A′
H(q) ⊆

AH(q).

This new A′
H(q) can then be employed to generate a new transformation R′. R′

is defined in the same manner as Algorithm 4.19 that constructs R except for the

different definition of prohibited events that is employed. R′ is again a transformation

that retains those states of H that are reachable by permissible transitions. As we

construct the state set R′(Qh) below, we will additionally construct an associated

subautomaton of H, R′(H), with a state set R′(Qh) and a transition function δR′ .

Based on our definition of a subautomaton given in Definition 4.14, the marking of

R′(H) will be consistent with the marking of H. The use of A′
H(q) in the construction

process will result in the transformed subautomaton R′(H) being state observable in

G.

If Qh = ∅, then R′(Qh) = ∅ and R′(H) is the empty automaton. Otherwise,

R′(Qh) and R′(H) are constructed as follows:

Algorithm 4.23. Construction of R′(Qh) and R′(H)

Step 1: q0 ∈ R′(Qh).

Step 2: If q ∈ R′(Qh) and δg(q, σ) ⊆ Qh for some σ ∈ Στ − A′
H(q), then q′ ∈

R′(Qh) ∀q′ ∈ δg(q, σ) and δR′(q, σ) = δg(q, σ). Otherwise, δR′(q, σ) is empty.

Step 3: Every state satisfying R′(Qh) and every transition for which δR′ is nonempty

is obtained as in Step 1 and Step 2. ¦

From the above algorithm and employing logic from [70], for any q ∈ R′(Qh)− q0,

95

there exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ Στ satisfying the following

conditions:

C1) δg(qi, σi) = qi+1 for i = 0, 1, . . . ,m− 1

C2) qi ∈ Qh for i = 0, 1, . . . ,m

C3) σi ∈ Στ − A′
H(qi) for i = 0, 1, . . . , m− 1

C4) qm = q

The following result that employs the logic of Lemma 1 in [68] can now be pre-

sented.

Proposition 4.24. For any subautomaton H v G

R(Qh) ⊆ R′(Qh) (4.22)

Proof. If q0 /∈ Qh, then R(Qh) = R′(Qh) = ∅. Consider the case that q0 ∈ Qh. Since

A′
H(q) ⊆ AH(q) for any q ∈ Qh, we have R(Qh) ⊆ R′(Qh).

Although the result of R(Q↑
h) represents a larger state set than can be achieved by

any prior state-feedback work, Proposition 4.24 demonstrates that we can generate

a potentially larger state set R′(Q↑
h) ⊇ R(Q↑

h). This together with the example of

Section 4.5.4 shows that our covering-based approach is less restrictive than existing

state-feedback approaches.

4.5.3 Covering-based filter construction

In this section we will specify how the subautomaton R′(H↑) is constructed. Here

R′(H↑) is defined according to Algorithm 4.23, where H↑ ⊆ H is the subautomaton

that possesses the state set Q↑
h. Specifically, the transition structure of H↑ is defined

such that it includes all transitions q
σ→ q′ of H for which the source state q and

destination state q′ ∈ δh(q, σ) are in Q↑
h.

Since a subautomaton R′(H↑) will be employed to represent each coordinating fil-

ter, we must first demonstrate that R′(H↑) is state observable and state controllable

in its associated G. We will specifically show that state observability holds directly

as a result of the R′ transformation. We will then demonstrate that the R′ opera-

tion did not destroy the state controllability achieved by the ↑ operation. In order

to accomplish this goal, we first propose the following hypothetical state-feedback

control law f ′ that achieves the specification R′(Q↑
h); though, our covering-based law

96

will ultimately be implemented according to equation (4.13).

f ′(q) = Στ − A′
H↑(q) (4.23)

The subautomaton f ′/G = (Qf ′ , Στ , δf ′ , q0, Qmf ′) is defined in the same manner

as Definition 4.18. Also, for any state q ∈ Qg − q0 that is also in Qf ′ , there exist

q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ Στ satisfying the following conditions [44]:

C5) qi+1 ∈ δg(qi, σi) for i = 0, 1, . . . , m− 1

C6) σi ∈ f ′(qi) for i = 0, 1, . . . , m− 1

C7) qm = q

Based on the manner in which the sets A′
H↑(q) are constructed, it can also be seen

that the following relation is implied where If ′ is defined for the automaton f ′/G.

For any q, q′ ∈ Qf ′ with q′ ∈ If ′(q), σ ∈ f ′(q) ∩ ΣG(q) ⇒ σ ∈ f ′(q′) (4.24)

The above then leads to a result that is similar to equation (4.15):

For any q, q′ ∈ Qf ′ , q
′ ∈ If ′(q) ⇒ f ′(q) ∩ ΣG(q) ∩ ΣG(q′) = f ′(q′) ∩ ΣG(q) ∩ ΣG(q′)

(4.25)

The above expression captures that the control applied by f ′ is consistent between

states that are indistinguishable for those feasible events that are shared between

the states. The limitation of consistency to those feasible events shared between

states demonstrates the limited transitivity that provides the improvement of our

covering-based approach. With the above property, we can now demonstrate that

state observability is achieved.

Proposition 4.25. The state-feedback law f ′ given by equation (4.23) generates a

subautomaton f ′/G that is state observable in G.

Proof.

• Let q ∈ δf ′(q0, s), σ ∈ Σc, Pτ (s)σ ∈ L(f ′/G) and p ∈ δg(q, σ).

• Pτ (s)σ ∈ L(f ′/G) implies there exists an s′ ∈ Σ∗
τ and q′ ∈ δf ′(q0, s

′) for which

Pτ (s
′) = Pτ (s) and σ ∈ f ′(q′).

• Since Pτ (s
′) = Pτ (s), q′ ∈ If ′(q). Therefore, we have that f ′(q)∩ΣG(q)∩ΣG(q′) =

f ′(q′) ∩ ΣG(q) ∩ ΣG(q′) by equation (4.25).

• Since σ ∈ f ′(q′) ∩ ΣG(q) ∩ ΣG(q′), σ ∈ f ′(q) ∩ ΣG(q) ∩ ΣG(q′) also.

• Since σ ∈ f ′(q) and p ∈ δg(q, σ), p ∈ δf ′(q, σ) by definition of δf ′ . Thus we have

shown that f ′/G is state observable in G.

97

This control law f ′ achieves the set of states R′(Q↑
h). This fact is mathematically

represented Qf ′ = R′(Q↑
h) and is proven in the following proposition employing logic

from Theorem 1 of [70]:

Proposition 4.26. If for the subautomaton H v G, H↑ is nonempty and f ′ is given

by equation (4.23), then Qf ′ = R′(Q↑
h).

Proof. See proof in Appendix.

Based on the above proposition, we have that q0 ∈ R′(Q↑
h) and that Qf ′ = R′(Q↑

h),

therefore, R′(Q↑
h) is Σu-invariant by Theorem 6 of [44]. This in turn implies that the

associated subautomaton f ′/G = R′(H↑) is state controllable in G. Therefore, we

have demonstrated that R′(H↑) is state controllable and state observable in G. As

such we can employ R′(H↑) as our filter automaton Hfilt ,j and can implement our

filter law Hfilt ,j according to equation (4.13). Note, the hypothetical state-feedback

law f ′ working under full observation achieves the same behavior as the covering-

based law of equation (4.13) under partial observation.

The only property that has not been addressed yet is blocking. By construction,

the marking of R′(H↑) is consistent with the marking of G. Taking the trim of

R′(H↑) makes the subautomaton nonblocking. In this instance, the trim operation

will simply remove those states of R′(H↑) that are blocking. This, however, can

destroy state controllability and/or state observability. Therefore, following the trim

operation, it may be necessary to repeat the ↑ and R′ operations again. A summary

of this algorithm is given below.

Algorithm 4.27. Filter Law Construction

Step 1: Given a blocking automaton G = Bj,a, let the subautomaton H = trim(G)

be our “specification.”

Step 2: Find Q↑
h, the supremal Σu-invariant subset of Qh. The algorithm of [56] can

be employed. Let H↑ be the subautomaton with the state set corresponding to Q↑
h.

Step 3: Construct the mapping IH↑ of indistinguishable states of the subautomaton

H↑. The algorithm of [71] can be used for this purpose and has polynomial complexity

in the number of events and states.

Step 4: Construct the sets of prohibited transitions A′
H↑(q) to satisfy equation (4.20).

Algorithm 4.21 can be employed.

98

Step 5: Follow Algorithm 4.23 to construct the state set R′(Q↑
h) and subautomaton

R′(H↑).

Step 6: If the subautomaton R′(H↑) is nonblocking, then this represents our filter

automaton Hfilt ,j and we are done. Otherwise, redefine H = trim(R′(H↑)) and re-

turn to Step 2. ¦

In the above, Step 3 and Step 4 could be addressed simultaneously by a single

algorithm. The end result of this procedure is a (possibly nondeterministic) sub-

automaton Hfilt ,j that satisfies requirements R1′, R2′, and R3′ with respect to the

blocking automaton G = Bj,a.

Each step in the above procedure has polynomial complexity in the number of

states and transitions of the initial automaton, therefore, each iteration of the al-

gorithm will also have polynomial complexity. In addition, each pass through the

algorithm either removes a state from the subautomaton or reaches a fixpoint. As-

suming the initial automaton has a finite number of states, at most n iterations must

be performed where n is the number of states in the initial automaton. Therefore, the

overall complexity of the algorithm is polynomial. The resulting coordinating filter

law produces more permissive control than existing state-feedback approaches, but

it is not necessarily maximal. This fact is demonstrated by Remark 4.31 following

the example of the next section.

4.5.4 Filter construction example

The following example helps to illustrate our filter construction procedure intro-

duced in Algorithm 4.27 of the previous section.

Example 4.28. Consider the blocking automaton G pictured on the left of Fig. 4.6

with event set partitioned into controllable and uncontrollable events as follows,

Σc = {a, b, c, d, f} and Σu = {e, τ}. By Step 1 of Algorithm 4.27, our specification

H0 = trim(G) is a subautomaton of G where the blocking state 9 has been removed.

Since state 8 of H0 then requires that the uncontrollable event e be disabled, the ↑
operation of Step 2 will remove state 8 resulting in the subautomaton H↑

0 .

Following Step 3 of Algorithm 4.27, the mapping IH↑
0

representing which states

are indistinguishable is then constructed. We will represent IH↑
0

as Table 4.1 that

was constructed using the algorithm from [71]. Specifically, the left-hand column

99

 b

 6

 7

 t

 b

 a

 d

 0

 1

 2

 3

 5

 4

 a

 a,d

 b

 c

 c

 d,e

 b

 b

 8
 9

 e

 e

 b

 G : R’(H) : 0

 f

 f b

 6

 7

 t

 b

 a

 d

 0

 1

 2

 3

 5

 4

 a

 a,d

 b

 c

 c

 d,e

 b

 f

 f

Figure 4.6: Filter construction example

enumerates each state q in the state space of H↑
0 and the center column lists the

corresponding set of indistinguishable states IH↑
0
(q).

Table 4.1: Table representing the map IH↑
0

.

q IH↑
0
(q) A′

H↑
0
(q)

0 0, 3, 6, 7
1 1
2 2, 3, 7
3 3, 2, 5, 6, 7, 0 b
4 4, 5
5 5, 4, 3
6 6, 7, 3, 0
7 7, 6, 3, 0, 2 b

Step 4 of Algorithm 4.27 then constructs the sets A′
H↑

0

(q). Examining state 3,

δg(3, b) = 8 ∈ Qg, but 8 /∈ Q↑
H0

, therefore, b ∈ A′
H↑

0

(3). It then follows that b is also

in the set A′
H↑

0

(7) since b is defined at state 7 and 7 ∈ IH↑
0
(3). Since there are no

other states in IH↑
0
(3) or IH↑

0
(7) for which a b event is defined, and since there are no

other events actively disabled by H↑
0 , all the sets A′

H↑
0

(q) are now completely defined.

Step 5 of the algorithm then applies the transformation R′. Since δg(7, b) = 0 ∈ Q↑
H0

and b ∈ A′
H↑

0

(7), event b must be disabled at state 7. The resulting subautomaton

R′(H↑
0) is displayed on the right-hand side of Fig. 4.6.

According to Step 6, since R′(H↑
0) is blocking, we must then take the trim and

start over at Step 2 of the algorithm. Let H1 = trim(R′(H↑
0)) and refer to the

left-hand side of Fig. 4.7 for an illustration.

Since the only actively disabled events b, d, and f are controllable, the ↑ operation

does not remove any states, H↑
1 = H1. We now construct the map IH↑

1
; the result is

shown below in Table 4.2.

100

 b

 a

 d

 0

 1

 2

 3

 5

 4

 a

 a,d

 b

 c

 c

 d,e

 b

R’(H) : 1

 f

 f

 H : 1

 b

 b

 a

 d

 0

 1

 2

 3

 5

 4

 a

 a

 b

 c

 c

 e

 b

 f

 f

 b

 d

 d

Figure 4.7: Filter construction example

Table 4.2: Table representing the map IH↑
1

.

q IH↑
1
(q) A′

H↑
1
(q)

0 0, 3 f
1 1
2 2, 3
3 3, 2, 5, 0 b, f
4 4, 5 d
5 5, 4, 3 d

Next we build the sets A′
H↑

1

(q). Noting which transitions of G are not included in

H↑
1 allows us to determine that f ∈ A′

H↑
1

(0), b ∈ A′
H↑

1

(3), and d ∈ A′
H↑

1

(5). Examining

the table describing the mapping IH↑
1
, we then also have that f ∈ A′

H↑
1

(3) since

3 ∈ IH↑
1
(0) and δg(3, f)!. Likewise, d ∈ A′

H↑
1

(4) since 4 ∈ IH↑
1
(5) and δg(4, d)!.

Now according to Step 5 we construct R′(H↑
1). First, note that one instance of a

d event is disabled at state 5 according to H↑
1 , therefore, the remaining d transition

at state 5 must also be disabled. Since δg(3, f) = 2 ∈ Q↑
H1

and f ∈ A′
H↑

1

(3), the

f event at state 3 must also be disabled. Likewise, the d event at state 4 must be

disabled. The resulting R′(H↑
1) is shown on the right-hand side of Fig. 4.7. Since this

subautomaton is nonblocking, we are done. Therefore, our deterministic filter law

Hfilt is represented by the nondeterministic automaton Hfilt = R′(H↑
1) that satisfies

requirements R1′, R2′, and R3′. ¦

In view of the above example, we make the following observations regarding the

new results presented in this section.

Remark 4.29. In traditional state-feedback control employing a mask M , states 3

and 4 would be in the same partition since state 3 is indistinguishable from state

5 and state 5 is indistinguishable from state 4. Therefore, traditional approaches

would have disabled the b event at state 4. This example along with equation (4.22)

101

demonstrates the advantage of our covering-based approach over the state-feedback

control approaches of [43] [69]. ¦
Remark 4.30. Our approach, however, still produces a static control law with respect

to the those events feasible at a given state. For example, if for some reason the b

event at state 3 needed to be disabled following the string ab, but not following

the string abca, our covering-based control law would not be able to make that

distinction. This more restrictive control law is again chosen to avoid the exponential

complexity that would come with implementing an event-feedback law. ¦
Remark 4.31. If we had recalculated the mapping I after the event d at state 5

was disabled, then states 0 and 3 would no longer be indistinguishable. This new

I mapping would then not have required that the f event at state 3 be disabled.

If we allowed the I mapping to change within the calculation of the transformation

R′, then the resulting subautomaton would be dependent on the order in which the

states were addressed. This dependence is an issue common also to event-feedback

approaches to control under partial observation. ¦
Remark 4.32. We have shown that our covering-based approach is an improvement

over the state-feedback approach proposed by [69]. The approach of [69] in turn has

been shown to provide more permissive control than the construction of the supremal

controllable and normal subset of states presented in [43]. Namely, if for all q in the

allowed state set the set M−1(M(q)) is a subset of the allowed state set, where

M−1(M(q)) = {q′ | M(q) = M(q′)},

then the state set is normal. The example of this subsection, therefore, shows how the

approach of [43] is more restrictive than our approach. Since in our example states

0 and 6 are reached by the same string abcd, they both have the same observation

under M , but state 0 is in the state set R′(Q↑
H1

) while state 6 is not. Therefore,

the state set R′(Q↑
H1

) violates normality. Construction of the supremal normal and

controllable subset of states would then require removal of state 0 leading to the

empty automaton. ¦

4.6 Flexible Manufacturing System (FMS) Example

In this section we will demonstrate the EBCR approach for generating nonblocking

modular supervisory control through the FMS example employed throughout this

102

dissertation. The details of this manufacturing system including the component

automata models were presented in Section 3.4.2.

Following Algorithm 4.6 of Section 4.2, the first step is to generate a set of lo-

cal modular supervisory controllers. Specifically, H2 is the automaton represen-

tation of the supervised module corresponding to specification B2 and subplant

G′
2 = Con2‖Robot . Likewise, H4 corresponds to specification B4 and subplant

G′
4 = Robot‖Lathe, H6 to specification B6 and subplant G′

6 = Robot‖AM , H7 to

specification B7 and subplant G′
7 = G′

6‖Con3, and H8 to specification B8 and sub-

plant G′
8 = Con3‖PM .

We will ultimately choose to address the supervisors in the order H7 → H6 →
H4 → H8 → H2. Recognizing that the plant components making up G′

6 are a subset

of the plant components making up G′
7, we have that L(H7) ⊆ L(G′

6) and can employ

a reduced supervisor for H6 based on the logic of Proposition 4.12. We will denote

this reduction C6. While the original supervisor H6 has 28 states and 71 transitions,

its reduction C6 can be represented by an automaton with 2 states and 3 transitions.

Step 2 then instructs us to generate conflict-equivalent abstractions for each su-

pervised subsystem employing Algorithm 4.2. Initially module H2 is represented by

an automaton with 12 states and 24 transitions that we will write 12(24). If a tran-

sition is self-looped at every state, then we will not count it in the total number of

transitions. Since events 21 and 22 are relevant to only the current subsystem H2, we

will “hide” them, that is, we will replace their occurrence in H2 by the silent event

τ . As such, we can apply the rules from Section 4.3.2 to generate the abstraction

H2,a that has size 4(6). Similarly, events 51, 52, 53, and 54 are relevant to only

subsystem H4 : 9(10), leading to the abstraction H4,a : 6(7). The relevant event set

of C6 : 2(3) is contained in the relevant event set of H7 : 80(259) and hence can be

reduced no further. The reduced size of the relevant event set of C6 as compared to

H6, however, does allow us to hide events 61, 64, 65, and 66 in H7. The resulting

conflict-equivalent abstraction is then H7,a : 31(115). Also, H8 : 6(6) has events 81

and 82 that can be hidden, leading to H8,a : 4(4).

The next step is to pick an initial subsystem. Some considerations for how to pick

a “good” ordering of subsystems will be discussed at the end of this section, but for

now, we will choose H7,a as our starting point. Following Step 4 of the procedure,

we will then choose the next subsystem to be C6 and will generate the composition

103

H7,a‖C6 : 136(405). The next step is to check for blocking. Since it turns out the

H7,a‖C6 is nonblocking, we skip to Step 7. At this point, event 63 is not relevant to

any of the remaining subsystems and hence can now be hidden. This leads to the

abstraction (H7,a‖C6)a : 27(79).

Since other subsystems still have not yet been addressed, we return to Step 4

and add H4,a to the composition, (H7,a‖C6)a‖H4,a : 45(120). Note, the process of

abstraction has led H4,a and the resulting composition to be nondeterministic. At

this point we again check for blocking. Since the composition is nonblocking, we

skip to Step 7. All the relevant events of the composition (H7,a‖C6)a‖H4,a are still

relevant to the remaining subsystems, therefore, no more events can be hidden at

this point. However, the composition can still be reduced further by applying the

conflict equivalence preserving rules introduced earlier, ((H7,a‖C6)a‖H4,a)a : 42(115).

Returning to Step 4 again, H8,a is added to the composition. The result

((H7,a‖C6)a‖H4,a)a‖H8,a : 61(52) turns out to be blocking. Therefore, according to

Step 6 of the procedure, a filter must be built to resolve the conflict. The blocking

composition B1,a = ((H7,a‖C6)a‖H4,a)a‖H8,a is in essence the uncontrolled “plant”

and we can apply Algorithm 4.27 to construct the subautomaton of B1,a that will

serve as the filter which supervises the system and prevents the blocking. Taking

the trim of B1,a removes two blocking states, but leaves the resulting subautomaton

not state controllable with respect to B1,a. Applying Steps 2 through 5 of Algo-

rithm 4.27 leaves a state controllable and state observable automaton, but it is again

blocking. Taking the trim and performing another iteration of the algorithm leaves

us a nonblocking subautomaton that is state controllable and state observable with

respect to B1,a. This subautomaton has 41 states and 120 transitions and serves as

our coordinating filter law Hfilt ,1 .

Since a determinized version of Hfilt ,1 composed with (H6‖H7)a‖H4,a‖H8,a is bisim-

ulation equivalent to Hfilt ,1 , we will replace the composition (H6‖H7)a‖H4,a‖H8,a by

Hfilt ,1 as we proceed to Step 7. At this point, the events 71, 72, 73, and 74 have

become local and can thus be hidden leading to the abstraction (Hfilt ,1)a : 9(17).

Returning to Step 4 once more, the last subsystem H2,a is added to the compo-

sition, (Hfilt ,1)a‖H2,a : 9(17). Since the composition is nonblocking and no further

subsystems remain, we are done. The resulting modular control achieved by the five

original modular supervisors along with the conflict-resolving law Hfilt ,1 satisfies the

104

given specifications in a nonblocking manner and is nonempty. Table 4.3 summarizes

the details of the procedure applied in this example.

Table 4.3: Application of Algorithm 4.6 to FMS example
Step Automaton States Notes

Built (Transitions)
1 H2 12(24) modular supervisors are built

H4 9(10)
H6 28(74)
H7 80(259) note G′7‖B7 : 128(420)
H8 6(6)

H6 → C6 2(3) supervisor reduction
2 H2 → H2,a 4(6) {21,22} hidden

H4 → H4,a 6(7) {51,52,53,54} hidden
H4,a is nondeterministic

H7 → H7,a 31(115) {61,64,65,66} hidden
H8 → H8,a 4(4) {81,82} hidden

3 H7,a chosen as the initial subsystem
4 H7,a‖C6 53(174) C6 chosen from neighboring subsystems
5 composition is nonblocking
6 this step is skipped
7 H7,a‖C6 → (H7,a‖C6)a 27(79) {63} hidden
4 (H7,a‖C6)a‖H4,a 45(120) H4,a chosen from neighboring subsystems
5 composition is nonblocking
6 this step is skipped
7 (H7,a‖C6)a‖H4,a → 42(115) no further events

((H7,a‖C6)a‖H4,a)a hidden at this point
4 ((H7,a‖C6)a‖H4,a)a‖H8,a 61(52) H8,a chosen from neighboring subsystems
5 composition is blocking
6 Hfilt,1 41(120) employ Algorithm 4.27

Hfilt,1 replaces ((H7,a‖C6)a‖H4,a)a‖H8,a

7 Hfilt,1 → (Hfilt,1)a 9(17) {71,72,73,74} hidden
4 (Hfilt,1)a‖H2,a 9(17) H2,a chosen from neighboring subsystems
5 composition is nonblocking
6 this step is skipped
7 no further subsystems left, done

It turns out that the resulting modular solution is more restrictive than the mono-

lithic solution in that it allows only five pieces to be operated on by the FMS at a

given time, while the monolithic solution allows six pieces to be active at once. The

loss of optimality of our approach arises in two ways due to the hiding of events.

Namely, hiding an event means that we lose the ability to disable it. Also, the hiding

of events causes us to lose information about what state the underlying plant is in,

and as such forces us to employ a more conservative control law. This loss of opti-

mality, however, is often worth the reduction in complexity the modular approach

provides. Specifically, a measure of the complexity of the modular solution in the

105

above example is that the largest automaton that had to be built had 128 states and

420 transitions. This automaton was constructed in the process of generating the

modular supervisor H7. In the monolithic approach, the composition of all the ma-

chines and buffers leads to an automaton with 13,248 states and 46,424 transitions.

While the size of the resulting automata does not account for the complexity of the

algorithms involved in generating the control laws and the abstractions, it does give

some indication of the benefits of this approach. Specifically, all algorithms employed

in generating the monolithic and EBCR solutions are known to have polynomial com-

plexity, except for the generation of the conflict-equivalent abstraction. This is an

area that needs to be investigated further.

Noting that the largest automaton constructed in the modular approach was the

result of building a single modular supervisor, the overall complexity could be reduced

further by employing abstraction in the construction of the modular supervisors,

in addition to using abstraction in the construction of the conflict-resolving filters.

Specifically, results for the construction of individual supervisors could be borrowed

from [17] [26] [75].

Additionally, an improved modular solution can often be arrived at by changing

the order in which subsystems are addressed or by changing the set of events that

are considered silent along the way. For instance, if in the above example we had

chosen not to hide the events 61, 63, and 65, the resulting modular solution would

have allowed six pieces to be operated on by the FMS at a given time, just like the

monolithic solution. This solution would have resulted in slightly larger automata,

with the largest automaton constructed having 150 states and 352 transitions.

One limitation of this approach is that there is not a single approach to ordering

subsystems that will result in the “best” overall solution. Some ordering heuristics

that can help keep the overall complexity of the procedure down include first choosing

subsystems that are either small or that offer the possibility of larger reduction.

The work of [21] offers a sizable survey of ordering heuristics applied to a variety

of examples. Implementation of a conflict-equivalent abstraction also relies on an

incomplete set of heuristic rules which do not in general provide a unique result.

Some heuristics for improving the optimality of this approach include “hiding”

fewer events. In this way, reduction is traded for optimality. It is also possible to

change the outcome by not building a filter immediately following the detection of

106

blocking. The idea here is that sometimes conflict is resolved by composition with

other subsystems and ultimately a filter is not needed. The advantage of waiting is

that a filter cannot disable uncontrollable events and hence sometimes must remove

states from an automaton, while interaction with other subsystems can prevent an

uncontrollable event from happening in the first place so that it does not need to be

actively disabled. The drawback of waiting to build the filter is that often the process

of abstraction hides transitions that could be used to prevent blocking or violations

of controllability. Ordering heuristics remain an open area for investigation.

This approach in general is well-suited to systems that are loosely coupled, as are

other modular approaches to control. If a component specification shares relevant

events with all plant components, then the achievable reduction will likely be modest,

though in most cases it will still result in smaller automata being built than with

the monolithic solution.

4.7 Chapter Summary

This chapter has proposed a new approach for resolving conflict among traditionally-

built modular supervisors. Requirements are presented for conflict-resolving filter

laws that guarantee safe nonblocking control. A methodology for building covering-

based filter laws that meet the prescribed requirements and avoids exponential com-

plexity is also proposed. Additionally, a manufacturing example is presented showing

the overall potential of the EBCR approach.

The modular architecture of the EBCR approach with its additional level of co-

ordinating control is similar to previous works [17] [74] [76]. The approach of this

chapter is unique, however, in that it employs conflict-equivalent abstractions in gen-

erating the coordinating control. Conflict-equivalent abstractions offer the potential

for a greater reduction in state-size than observer-type abstractions that are em-

ployed in most prior work. Drawbacks of a conflict-equivalent abstraction are that

it can introduce nondeterminism and it is not as straightforward to implement.

Conflict-equivalent abstractions were employed by [21] to reduce the complexity

of verifying nonconflict. The work of [21] incrementally constructs the global system

applying abstraction each step along the way. The EBCR approach builds off this

work, where we go beyond detecting conflict to actually resolving it if it is present.

Conflict-equivalent abstractions were also employed in [48] for constructing noncon-

107

flicting modular supervisors. The work of [48] proposes a methodology similar to the

IHSC approach of Chapter 3, but does not specify how to construct the supervisors

based on the abstracted models.

The covering-based approach employed in building the filters of this chapter is also

a contribution in that it generates a less restrictive control law than is achieved by

existing state-feedback methodologies for partially observed systems. Existing state-

feedback approaches to control under partial observation require that the control

be consistently applied at states in the same observation partition [43] [69]. In the

approach of this chapter, we rather generate a covering of the state space that allows

for the application of a less restrictive control law.

One drawback of the architecture of the EBCR approach, and of work like [17],

is that sharing is increased between the modules, thereby limiting which events can

be hidden. Referring to the FMS example as shown in Fig. 1.4, one can see those

events associated with the Robot subplant are shared between four of the five modu-

lar supervisors. Therefore, those events that are relevant to Robot cannot be hidden

until the conflict has been resolved among the four modular supervisors that control

it. This problem has been addressed somewhat by the logic demonstrated in Sec-

tion 4.3.4 that shows that a reduced supervisor can be employed when the associated

plant has been addressed by previously examined modular supervisors. This logic

has not been proven, however, when only a portion of the associated plant has been

addressed by preceding modular supervisors. Therefore, a direction for future work

would be to develop the theory for generating reduced supervisors based on only a

portion of a plant.

Another important direction for future work is to develop a better understanding

of how conflict-equivalent abstractions can be generated. Specifically, it would be

useful to investigate the complexity associated with generating a conflict-equivalent

abstraction based on the heuristic rules of [19] [21]. It could also be interesting

to explore the possibility that other rules could be developed for generating the

abstraction. Other directions for future work include investigating different ordering

heuristics. Work could also be done with regard to finding new ways to construct

the conflict-resolving filters. Finally, the results of this work could be combined with

other modular and hierarchical approaches to supervisory control to achieve even

greater reduction in complexity.

CHAPTER 5

Multi-Level Interface-Based Control

In this chapter an approach to supervisory control we will refer to as Multiple-

Level Interface-Based Control (MLIBC) is proposed to mitigate the complexity prob-

lems associated with the analysis and design of DES. This approach partitions the

global system into modules and adds interfaces between neighboring modules. The

additional structure provided by these interfaces allows global system properties such

as nonblocking and controllability to be guaranteed solely based on the satisfaction

of local requirements. The ability to verify properties and to design supervisors

without having to construct the monolithic system helps to mitigate the state-space

explosion problem. This type of architecture also helps to improve reconfigurability

since, if a single module is modified, the global system does not need to be reana-

lyzed. In this case, only the modified module must be reanalyzed with respect to its

interfaces. The results of this chapter generalize the work of Leduc [38] [39] [41] that

was developed for a two-level interface-based architecture.

An interface-based approach to control, however, does have its drawbacks. Namely,

the increased restrictiveness of the interfaces can result in suboptimal control. In

many cases, this exchange of optimality for a reduction in computational complexity

and improved reconfigurability may be acceptable.

This chapter specifically provides local conditions that guarantee global nonblock-

ing and language controllability of a multiple-level system with interfaces like the one

pictured in Fig. 5.1. This generalized architecture allows the system to be partitioned

into smaller modules than the two-level interface-based architecture first introduced

in [38] [41], thereby further limiting the complexity of analysis and design. We also

demonstrate that the interface consistency requirements of [38] [41] can be relaxed.

This change makes the necessary requirements easier to satisfy, especially in the

108

109

multiple-level case.

Figure 5.1: Illustration of the multiple-level architecture

In this chapter, we also present results for synthesizing modular supervisors in

the multiple-level architecture that are maximally permissive with respect to a given

specification and set of interfaces. These results directly follow the supervisor syn-

thesis approach developed in [39] for the two-level case. A final contribution of this

chapter is to propose an approach to interface synthesis, something that has not yet

been addressed in the literature. While computationally expensive, the approach

provides insight into this challenging problem. In existing works, interfaces have

been constructed heuristically based on the designer’s understanding of the system.

The results of this chapter assume that the DES are modeled by deterministic

automata. It is also assumed that the automata may have different event sets, though

the languages employed in the chapter have all been lifted to the global alphabet Σ.

The organization of the remainder of this chapter is as follows. Section 5.1 intro-

duces notation and definitions necessary for a hierarchical interface-based approach to

supervisory control. Section 5.2 demonstrates that the global properties of nonblock-

ing and language controllability can be verified through local analysis. Sections 5.3

and 5.4 outline our approaches for supervisor and interface synthesis respectively.

Section 5.5 demonstrates the application of this architecture to the FMS example,

while Section 5.6 concludes the chapter with a summary of its contributions.

110

5.1 Hierarchical Interface-Based Supervisory Control

We will now define the notation and definitions necessary for proving results with

regard to a multiple-level application of hierarchical interface-based supervisory con-

trol. We will specifically assume a connected tree architecture with a single root node.

Figure 5.1 illustrates this situation. Our component-wise specified system is split up

into modules, each consisting of a plant Gi
k and a supervisor Si

k constructed with re-

spect to a local specification Ei
k resulting in the closed-loop subsystem H i

k = Gi
k‖Si

k.

The superscript i reflects the level of the hierarchy and takes values {1, . . . , q}. The

subscript k indicates the index within a given level and takes the values {1, . . . , ni},
where this set represents all modules and interfaces on a given level i, including

modules and interfaces that have different corresponding higher-level neighbors.

All interaction between modules takes place through corresponding interfaces I i
k.

These interfaces restrict the behaviour of the overall system in such a way that global

properties can be guaranteed by local analysis. In a sense, these interfaces may apply

additional control. Figure 5.2 shows a detail of the multiple-level architecture. We

will refer to the global system defined in terms of these modules and interfaces as

the system Φ.

Figure 5.2: Detail of the multiple-level architecture

In this architecture, all events shared between a given module H i
k and its higher-

level neighbor are classified as either request events ρ ∈ ΣRi
k

or answer events

α ∈ ΣAi
k
. The occurrence of each of these events must then be accepted by the

111

corresponding interface I i
k. Conceptually, request events are thought of as being

under the control of the higher-level module and answer events as being under the

control of the lower-level module. For the purposes of this chapter, we will assume

the interfaces take the form of a command-pair interface defined below in the manner

of [38].

Definition 5.1. A DES I i
k = (X i

k, ΣRi
k
∪̇ΣAi

k
, ξi

k, x
i
0k

, X i
mk

) is a command-pair inter-

face if the following are true:

A) L(I i
k) ⊆ (ΣRi

k
.ΣAi

k
)∗

B) Lm(I i
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(I i

k) ¦
From the above definition it can be deduced that the relevant event set for the

interface I i
k is given as follows:

ΣIi
k

:= ΣAi
k
∪̇ΣRi

k

We will also define the relevant event set of a given module H i
k to be equal to the

union of the relevant event sets of the associated plant component and specification.

ΣHi
k

:= Σ(Gi
k) ∪ Σ(Ei

k)

In turn, we will assume the event sets of Gi
k, Ei

k, and Si
k are equal to ΣHi

k
, though

their relevant event sets will not necessarily be the same. We will also assume that the

global alphabet is partitioned as shown in equation (5.1), where the set Σi
k represents

those events relevant to H i
k but no other modules. The following also assumes there

is only a single module on level 1, the top level.

Σ := Σ1
1∪̇

⋃̇
i=2,...,q

(⋃̇
k=1,...,ni

(
Σi

k∪̇ΣAi
k
∪̇ΣRi

k

))
(5.1)

A consequence of equation (5.1) is that each interface is completely disjoint from

all other interfaces, that is, ΣIi
k
∩ ΣIi′

k′
= ∅,∀((i 6= i′) ∨ (k 6= k′)). We will further

assume that the event set of each module H i
k is constrained to have the partitioning

given in equation (5.2). The following is consistent with the connected tree archi-

tecture of our approach. Since there are no interfaces with superscript 1 or q + 1,

we will consider L(I1
k) = L(Iq+1

j) = Σ∗. This therefore implies that these interfaces

have no relevant events and hence ΣI1
k

= ΣIq+1
j

= ∅.

ΣHi
k

= Σi
k∪̇ΣIi

k
∪̇

⋃̇
j∈Ji

k

ΣIi+1
j

where J i
k := {j | ΣHi

k
∩ ΣIi+1

j
6= ∅} (5.2)

112

In the above, the index sets J i
k for modules on the ith level partition the set

{1, . . . , ni+1} into disjoint subsets. An implication of equation (5.2) is that each

module H i
k may share relevant events only with modules from the i + 1 level and a

single module from the i − 1 level. We will employ script letters to represent the

languages generated by the corresponding automata lifted to the global alphabet.

This convention is employed in the following definitions.

PHi
k

: Σ∗ → Σ∗
Hi

k
PIi

k
: Σ∗ → Σ∗

Ii
k

Hi
k := P−1

Hi
k
(L(H i

k)) Hi
mk

:= P−1
Hi

k
(Lm(H i

k))

Gi
k := P−1

Hi
k
(L(Gi

k)) Gi
mk

:= P−1
Hi

k
(Lm(Gi

k))

E i
k := P−1

Hi
k
(L(Ei

k)) E i
mk

:= P−1
Hi

k
(Lm(Ei

k))

S i
k := P−1

Hi
k
(L(Si

k)) S i
mk

:= P−1
Hi

k
(Lm(Si

k))

I i
k := P−1

Ii
k

(L(I i
k)) I i

mk
:= P−1

Ii
k

(Lm(I i
k))

The following requirements modified from [40] will be employed to guarantee

global properties through local analysis for a given set of DES. Specifically, each

property will be checked with respect to the i-kth module and those interfaces with

which it shares relevant events. Refer again to Fig. 5.2 to help visualize the structure

of a single module. In the following, we will define the event set ΣLi
k

= ΣHi
k
− ΣIi

k

to be those events relevant to the module H i
k that are not relevant to the module on

the next higher level of the hierarchy.

Definition 5.2. The multiple-level interface system Φ is said to be multi-level non-

blocking if for all i ∈ {1, . . . , q} and for all k ∈ {1, . . . , ni} corresponding to each i,

the following condition is satisfied:

Hi
mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

= Hi
k ∩ I i

k ∩
⋂

j∈Ji
k

I i+1
j ¦

Definition 5.3. The multiple-level interface system Φ is said to be multi-level con-

trollable with respect to the alphabet partitions given by (5.1) and (5.2), if for all

i ∈ {1, . . . , q} and for all k ∈ {1, . . . , ni} corresponding to each i, the following

conditions are satisfied:

i) The event set of Gi
k and Si

k is ΣHi
k

and the event set of I i
k is ΣIi

k
.

ii) (∀s ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ S i
k)

EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligSi
k∩Ii

k
(s) ¦

113

Definition 5.4. The multiple-level interface system Φ is said to be multi-level con-

sistent with respect to the alphabet partitions given by (5.1) and (5.2), if for all

i ∈ {1, . . . , q} and for all k ∈ {1, . . . , ni} corresponding to each i, the following

conditions are satisfied:

Multi-level Properties

1) The event set of H i
k is ΣHi

k
.

2) I i
k is a command-pair interface.

Upper-level Property

3) (∀s ∈ Hi
k ∩

⋂
j∈Ji

k
I i+1

j)(∀j ∈ J i
k),

EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligHi

k
(s)

Lower-level Properties

4) (∀s ∈ (Σ∗.ΣAi
k
)∗.Σ∗

Li
k
∩Hi

k ∩ I i
k)(∀ρ ∈ ΣRi

k
),

sρ ∈ I i
k ⇒ (∃l ∈ Σ∗

Li
k
) slρ ∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j

5) (∀s ∈ Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j)(∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
),

sρα ∈ I i
k ⇒ (∃l ∈ Σ∗

Li
k
) sρlα ∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j

6) (∀s ∈ Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j),

s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
¦

In words, Point 3 of Definition 5.4 requires that the i-kth module be ΣAi+1
j

-

controllable with respect to each of its lower-level interfaces I i+1
j . Points 4 and 5

require that request and answer events, respectively, be reachable in a module by

events not shared with the corresponding upper-level module. Point 6 requires that if

a string is marked and accepted by an interface, then it can be extended to a marked

string in the corresponding lower-level module by events that again are not shared

with the upper-level module. Some of these requirements are discussed further in

Section 5.2.1.

5.2 Global Nonblocking and Controllability

In this section we will present the main results of this chapter. Specifically, we

will show that if a set of local conditions based on the definitions of Section 5.1 are

satisfied, then the global multiple-level system is nonblocking and the conjunction of

modular supervisors and interfaces is language controllable in the sense of equation

(2.1) with respect to the global plant. These results are presented in Theorem 5.5 and

114

Theorem 5.6 given below. Their proofs are presented after some important special

cases are discussed.

Theorem 5.5. If the multiple-level interface system Φ is multi-level nonblocking

and multi-level consistent with respect to the alphabet partitions given by (5.1) and

(5.2), then the complete system is nonblocking:

H1
m ∩H2

m ∩ I2
m ∩ . . . ∩Hq

m ∩ Iq
m = H1 ∩H2 ∩ I2 ∩ . . . ∩Hq ∩ Iq

where

Hi
m = Hi

m1
∩ . . . ∩Hi

mni
, I i

m = I i
m1
∩ . . . ∩ I i

mni

Hi = Hi
1 ∩ . . . ∩Hi

ni
, I i = I i

1 ∩ . . . ∩ I i
ni

Theorem 5.6. If the multiple-level interface system Φ is multi-level controllable

with respect to the alphabet partitions given by (5.1) and (5.2), then the supervisor

language S = S1 ∩S2 ∩ I2 ∩ . . .∩Sq ∩ Iq is Σu-controllable with respect to the plant

language G = G1 ∩ . . . ∩ Gq.

Where: S i = S i
1 ∩ . . . ∩ S i

ni
, I i = I i

1 ∩ . . . ∩ I i
ni

, and Gi = Gi
1 ∩ . . . ∩ Gi

ni

5.2.1 Two-level case

In this subsection we present the following results which are special cases of The-

orem 5.5 and Theorem 5.6 for a two-level system. Specifically, Theorem 5.10 is a

result modified from [40] for the new interface consistency definition of Section 5.1,

while Theorem 5.11 is taken directly from [40].

Consider a two-level system consisting of a single high-level module H1, and a

series of low-level modules H2
1 , . . . , H

2
n, and interfaces I2

1 , . . . , I
2
n. Examining the no-

tion of multi-level nonblocking introduced in Definition 5.2 for each of the two levels,

one can see this definition reduces to the level-wise nonblocking definition of the two-

level case presented in [40] and repeated below. In examination of Definition 5.2,

we assume I1 = Σ∗ and I3
j = Σ∗ for all j, since there are no interfaces above the

first level of the hierarchy or below the second level. This convention for interfaces

is used in examination of multi-level controllability also.

Definition 5.7. [40] A two-level interface system composed of DES

H1, H2
1 , I

2
1 , . . . , H

2
n, I2

n, is said to be level-wise nonblocking if the following conditions

are satisfied:

115

i) H1
m ∩

⋂
j=1,...,n I2

mj
= H1 ∩⋂

j=1,...,n I2
j

ii) H2
mk
∩ I2

mk
= H2

k ∩ I2
k , ∀k ∈ {1, . . . , n} ¦

Similarly, we can examine the notion of multi-level controllability introduced in

Definition 5.3. Applying Point ii) of the definition to the two levels of the interface

system, Definition 5.3 reduces to the level-wise controllability definition of the two-

level case presented in [40] and repeated below.

Definition 5.8. [40] A two-level interface system composed of plant components

G1, G2
1, . . . , G

2
n, supervisors S1, S2

1 , . . . , S
2
n, and interfaces I2

1 , . . ., I2
n, is said to be

level-wise controllable with respect to the alphabet partition given by (5.1), if for all

k ∈ {1, . . . , n}, the following conditions are satisfied:

i) The alphabet of G1 and S1 is ΣH1 , of G2
k and S2

k is ΣH2
k
, and of I2

k is ΣI2
k
.

ii) (∀s ∈ G2
k ∩ I2

k ∩ S2
k),

EligG2
k
(s) ∩ Σu ⊆ EligS2

k∩I2
k
(s)

iii) (∀s ∈ G1 ∩ I ∩ S1),

EligG1∩I(s) ∩ Σu ⊆ EligS1(s)

where I = I2
1 ∩ . . . ∩ I2

n ¦

For the two-level case, Definition 5.4 reduces to Definition 5.9 which is analogous

to the interface consistency definition presented in [40]. The difference between the

definition presented here and the one presented in [40] is the modified Point 4.

Since the high-level module H1 has no corresponding interface I1 above it in the

hierarchy, Points 4-6 do not need to be verified for level 1 since ΣA1 = ΣR1 = ∅.
Likewise, since the low-level modules H2

k do not have any interfaces I3
j below them

in the hierarchy, Point 3 of Definition 5.4 does not need to be verified for level 2 since

ΣA3
j

= ΣR3
j

= ∅ for all j. Combining Definition 5.4 for each of the two levels leads to

the following modified version of interface consistency.

Definition 5.9. A two-level interface system composed of DES H1, H2
1 , I

2
1 , . . . , H

2
n, I2

n,

is said to be interface consistent with respect to the alphabet partition given by (5.1)

if for all k ∈ {1, . . . , n}, the following conditions are satisfied:

1) The event set of H1 is ΣH1 and the event set of H2
k is ΣH2

k
.

2) I2
k is a command-pair interface.

3) (∀s ∈ H1 ∩⋂
j=1,...,n I2

j),

EligI2
k
(s) ∩ ΣA2

k
⊆ EligH1(s)

116

4) (∀s ∈ (Σ∗.ΣA2
k
)∗.Σ∗

L2
k
∩H2

k ∩ I2
k)(∀ρ ∈ ΣR2

k
),

sρ ∈ I2
k ⇒ (∃l ∈ Σ∗

L2
k
) slρ ∈ H2

k ∩ I2
k

5) (∀s ∈ H2
k ∩ I2

k)(∀ρ ∈ ΣR2
k
)(∀α ∈ ΣA2

k
),

sρα ∈ I2
k ⇒ (∃l ∈ Σ∗

L2
k
) sρlα ∈ H2

k ∩ I2
k

6) (∀s ∈ H2
k ∩ I2

k),

s ∈ I2
mk
⇒ (∃l ∈ Σ∗

L2
k
) sl ∈ H2

mk
∩ I2

mk
¦

We can now use these definitions to present the following results that are special

cases of Theorem 5.5 and Theorem 5.6 for a two-level system.

Theorem 5.10. If the two-level interface system composed of DES

H1, H2
1 , I

2
1 , . . . , H

2
n, I2

n, is level-wise nonblocking and interface consistent with respect

to the alphabet partition given by (5.1), then the global system is nonblocking:

H1
m ∩

⋂
j=1,...,n

(H2
mj
∩ I2

mj
) = H1 ∩

⋂
j=1,...,n

(H2
j ∩ I2

j)

Proof. See proof in Appendix.

Theorem 5.11. [40] If the two-level interface system composed of plant compo-

nents G1, G2
1, . . . , G

2
n, supervisors S1, S2

1 , . . . , S
2
n, and interfaces I2

1 , . . . , I
2
n, is level-

wise controllable with respect to the alphabet partition given by (5.1), then the super-

visor language S = S1∩⋂
j=1,...,n(S2

j ∩I2
j) is Σu-controllable with respect to the plant

language G = G1 ∩⋂
j=1,...,n(G2

j).

The proof of Theorem 5.10 can be found in the Appendix and follows closely

the logic presented in [37], where the only difference is that the interface consistency

requirement has been relaxed. Specifically, Point 4 of Definition 5.4 has been modified

from what was originally a controllability requirement to the reachability requirement

prescribed in this chapter. The original Point 4 required that each low-level module

H2
k be ΣR2

k
-controllable with respect to its interface I2

k :

(∀s ∈ H2
k ∩ I2

k), EligI2
k
(s) ∩ ΣR2

k
⊆ EligH2

k
(s) (5.3)

The spirit of this requirement is that the low-level modules have control only over

those events shared with the high-level module that are answer events. Therefore, the

high-level knows that if it issues a request that is accepted by the interface, the low-

level will not disable it. This requirement is mirrored by Point 3 that specifies that

117

the high-level module H1 be ΣA2
k
-controllable with respect to each of its interfaces

I2
k . These requirements are at the core of what enables us to draw conclusions about

the global system with only local analysis.

The new Point 4 still captures the intent of the original requirement by requiring

instead that the low-level be able to reach, via a string of low-level events, each

request event allowed by the interface. Therefore, even though the low-level may

not allow a request event immediately (as dictated by the original controllability re-

quirement), it will eventually be able to execute the required request event following

the occurrence of a string of low-level events. Since the request event is reached by

local low-level events, we know that the low-level cannot be prevented from reaching

the request event by interaction with the interface or high-level module. The fol-

lowing example helps to illustrate the difference between the original and modified

requirements.

Example 5.12. Consider the interface I and low-level module L displayed in Fig. 5.3.

Let I and L be the respective generated languages lifted to the global alphabet. For

the set of request events ΣR = {r1, r2} and answer events ΣA = {a1, a2}, I is a

command-pair interface. It can be seen by inspection that L is not ΣR-controllable

with respect to I. Specifically, r1 /∈ EligL(ε), but r1 ∈ EligI(ε), implying a violation

of ΣR-controllability since r1 is not enabled at state 0 of L. Also, r2 /∈ EligL(l1r1a1l2),

but r2 ∈ EligI(l1r1a1l2), therefore implying a violation since r2 is not enabled at state

4 of L. L can be modified to remove state 4 (and subsequently state 5) and will gen-

erate a non-trivial language such that l1r1a1l2 /∈ L, but the only way to remove the

string ε from L is to make L the empty automaton. Another possible remedy is to

replace the event r1 in the set ΣR by the event l1. The problem that we run into

here is that it could be the case in a multiple-level architecture that l1 was employed

in an interface from a lower level of the architecture.

The original language L, however, does satisfy the modified Point 4 with respect

to the interface language I. For example, even though the request r1 is not enabled

at state 0 of L, r1 can be reached by low-level events. Likewise, the request event r2

can be reached from state 4 via low-level events. ¦
Point 4 of the interface consistency definition is specifically employed in Proposi-

tion 13 of [37]. A revised version of this proposition using the modified Point 4 can

be found in the Appendix. This revised proposition demonstrates that the relaxed

118

Figure 5.3: Example illustrating the relaxation of Point 4

interface consistency definition holds in the two-level case. Later it will be seen that

our interface consistency definition is sufficient for the multiple-level case also.

It should be noted that if this interface-based approach to control is implemented

in a distributed fashion, then the new Point 4 will make it difficult for the mod-

ules to truly synchronize on a request event, since an event requested by a module

does not have to occur in the lower level immediately. If the modular control is

implemented on a centralized computer, then the modules can synchronize with one

another since there are no problems with communication. If the modular supervisors

are distributed across several computers, then when a request is made by a module,

the associated lower-level module will have to queue this request until it is able to

address it. Even though the modules will not actually be synchronized in time, all

the necessary actions will still be performed in the correct order.

Another approach to implementing this modular control in a distributed fashion

would be to redesign the component models to include virtual events that could be

employed as requests. In this manner, the upper-level module could issue a request

that could be enacted by the corresponding lower-level module immediately, such

that the lower level is essentially saying that it has received the request. The lower-

level module then would go on to carry out the actual task desired by the upper level

before issuing an answer. In this approach the original Point 4 could be employed.

5.2.2 Multiple-level serial case

We will now demonstrate results analogous to Theorem 5.5 and Theorem 5.6 for

the case where each level of the hierarchy consists of only a single module. This

119

case is referred to as a multiple-level serial-interface architecture. Examination of

the proofs for this case will make the logic of the main results of this chapter easier

to follow.

Controllability and nonblocking of the multiple-level serial-interface architecture

will follow from the results presented for the two-level case. Specifically, the re-

quirements of Theorem 5.10 and Theorem 5.11 must be met for a series of two-level

systems consisting of a high level H i−1 = Si−1‖Gi−1, an interface I i, and a low level

H i‖I i+1 = Si‖Gi‖I i+1, where i = {2, . . . , q}. The proofs to follow rely on this modi-

fied formulation where the low-level plant includes the interface from the level below,

that is, the low-level plant is considered Gi‖I i+1. The disjointness of the alphabet

partitions of equations (5.1) and (5.2) will also be needed. For the interface Iq,

Hq−1 is considered the high-level and Hq is considered the low-level since there is no

interface preceding the bottom level of the hierarchy.

Figure 5.4 illustrates the approach taken in the following proofs. The proofs

begin with the two-level system at the top of the hierarchy, which is immediately

nonblocking and controllable by Theorems 5.10 and 5.11. We then consider this

serial system to be the “high-level” and add another module that is considered the

“low-level.” This process continues where the high-level gets larger and larger and

the low-level is just the next module considered. With this in mind, all low-level

requirements are immediately met. The high-level properties are shown by induction.

Figure 5.4: Illustration of approach of proofs

The proposition given below will be needed in the proofs to follow. Specifically,

120

this proposition is used to demonstrate controllability between languages that are

separated in the hierarchy, that is, languages that do not share relevant events.

Proposition 5.13. Let K, L ⊆ Σ∗ be prefix-closed languages. If K does not have

any relevant events in the set Σu ⊆ Σ, then K is Σu-controllable with respect to L.

Proof.

• Let t ∈ KΣu. This means that t = sσ where s ∈ K and σ ∈ Σu.

• Since all the events in Σu are irrelevant to K, s ∈ K implies t = sσ ∈ K by

Definition 2.2. Therefore,

KΣu ⊆ K

• Intersecting both sides with L,

KΣu ∩ L ⊆ K ∩ L

• Since K ∩ L ⊆ K, we therefore have our desired result

KΣu ∩ L ⊆ K

The following two important theorems demonstrate local conditions under which

the global multiple-level serial interface system is nonblocking and controllable.

Theorem 5.14. If the multiple-level serial interface system composed of DES

H1, H2, I2, . . . , Hq, Iq, is multi-level nonblocking and multi-level consistent with re-

spect to the alphabet partitions given by (5.1) and (5.2), then the global system is

nonblocking:

H1
m ∩H2

m ∩ I2
m ∩ . . . ∩Hq

m ∩ Iq
m = H1 ∩H2 ∩ I2 ∩ . . . ∩Hq ∩ Iq

Proof.

• Beginning at the top of the hierarchy, consider a two-level system consisting of a

high-level H1, a low-level H2‖I3, and an interface I2. Because the overall system is

multi-level nonblocking, we have for the first level that H1
m ∩ I2

m = H1∩I2. Similarly

for the second level, we have that H2
m ∩ I2

m ∩ I3
m = H2 ∩ I2 ∩ I3. These two results

121

provide that this two-level component is level-wise nonblocking. Additionally, the

fact that the overall system is multi-level consistent provides that this two-level

component is interface consistent. Therefore, Theorem 5.10 can be applied to show

that:

H1
m ∩H2

m ∩ I2
m ∩ I3

m = H1 ∩H2 ∩ I2 ∩ I3 (5.4)

• Now consider a two-level system where the high-level is H1‖H2‖I2, the low-level

is H3‖I4, and the interface is I3. Since the global system is multi-level nonblocking

and multi-level consistent, all low-level and multi-level requirements of the level-wise

nonblocking and interface consistency definitions are known to be met. The level-wise

nonblocking of the high-level has been shown to be met by equation (5.4). The only

necessary requirement left to be shown is that Point 3 of the interface consistency

definition is satisfied, that is, H1 ∩ H2 ∩ I2 is ΣA3-controllable with respect to the

interface I3.

Since the whole system is multi-level consistent, H2 is ΣA3-controllable with re-

spect to the interface I3. By equations (5.1) and (5.2), the languages H1 and I2 do

not have any relevant events in the set ΣA3 , therefore, they are both ΣA3-controllable

with respect to I3 by Proposition 5.13. Hence, the intersection H1 ∩H2 ∩ I2 is also

ΣA3-controllable with respect to I3 by Proposition 3.4, since the languages are prefix-

closed and prefix-closed languages are immediately nonconflicting.

Since this two-level system is therefore level-wise nonblocking and interface con-

sistent, Theorem 5.10 can be employed again to show that:

H1
m ∩H2

m ∩ I2
m ∩H3

m ∩ I3
m ∩ I4

m = H1 ∩H2 ∩ I2 ∩H3 ∩ I3 ∩ I4

• This logic is repeated until all modules have been addressed, leading to the desired

result.

In the above proof, the “low-level” module always stands alone, thus Point 4 of

Definition 5.4 is immediately satisfied (as well as all other low-level requirements).

Theorem 5.15. If the multiple-level serial interface system composed of plant com-

ponents G1, . . . , Gq, supervisors S1, . . . , Sq, and interfaces I2, . . . , Iq, is multi-level

controllable with respect to the alphabet partitions given by (5.1) and (5.2), then the

supervisor language S = S1 ∩ S2 ∩ I2 ∩ . . . ∩ Sq ∩ Iq is Σu-controllable with respect

to the plant language G = G1 ∩ . . . ∩ Gq.

122

Proof.

• Beginning at the top of the hierarchy, consider a two-level system consisting of a

high-level plant G1 and supervisor S1, a low-level plant G2‖I3 and supervisor S2,

and an interface I2. Since the overall system is multi-level controllable, we have

for the first level that S1 is Σu-controllable with respect to G1 ∩ I2. Similarly for

the second level, we have that S2 ∩ I2 is Σu-controllable with respect to G2 ∩ I3.

These two results provide that this two-level component is level-wise controllable.

Therefore, Theorem 5.11 can be applied to show that S1 ∩S2 ∩I2 is Σu-controllable

with respect to G1 ∩ G2 ∩ I3.

• Now consider a two-level system with the high-level plant G1‖G2 and supervisor

S1‖S2‖I2, a low-level plant G3‖I4 and supervisor S3, and an interface I3. Since the

overall system is multi-level controllable, Points i) and ii) of the level-wise control-

lability requirement are satisfied immediately. Point iii) is satisfied by the previous

step of this proof. Therefore, Theorem 5.11 can be applied again to show that

S1 ∩ S2 ∩ I2 ∩ S3 ∩ I3 is Σu-controllable with respect to G1 ∩ G2 ∩ G3 ∩ I4.

• This logic is repeated until all modules have been addressed, leading to the desired

result.

5.2.3 General multiple-level case

The proofs of the main results of this chapter follow the logic of Theorems 5.14

and 5.15, but with multiple modules per level of the hierarchy. Recall Fig. 5.1 and

Fig. 5.2 that illustrate the general multiple-level architecture we are considering.

Proof of Theorem 5.5:

• Beginning at the top of the hierarchy, consider a two-level system consisting of a

high-level H1
1 , a set of interfaces {I2

` }, and a corresponding set of low-level modules

{H2
` ||(

∣∣∣∣
k∈J2

`

I3
k)} where ` = {1, . . . , n2}. Because the overall system is multi-level

nonblocking, we have for the first level that H1
m1
∩⋂

∀` I2
m`

= H1
1 ∩

⋂
∀` I2

` . Simi-

larly for each module on the second level, we have that H2
m`
∩ I2

m`
∩⋂

k∈J2
`
I3

mk
=

H1
` ∩ I2

` ∩
⋂

k∈J2
`
I3

k . These two results provide that this two-level component is

level-wise nonblocking. Additionally, the fact that the overall system is multi-level

consistent provides that this two-level component is interface consistent. Therefore,

Theorem 5.10 can be applied to show equation (5.5). Within a given level, all mod-

123

ules are included since the system is connected.

H1
m ∩H2

m ∩ I2
m ∩ I3

m = H1 ∩H2 ∩ I3 ∩ I3 (5.5)

• Now consider a system with a high-level H1
1‖H2

1‖ . . . ‖H2
n2
‖I2

1‖ . . . ‖I2
n2

, a set of in-

terfaces {I3
k}, and a corresponding set of low-level modules {H3

k ||(
∣∣∣∣

j∈J3
k

I4
j)} where

k = {1, . . . , n3}. Based on the given assumptions, all low-level and multi-level re-

quirements are known to be met. The level-wise nonblocking of the high-level has

been shown to be met by equation (5.5). The only requirement left is Point 3 of

the interface consistency definition, that is, it must be shown that the high-level

language is ΣA3
k
-controllable with respect to each I3

k , ∀k = {1, . . . , n3}.
Consider a single interface language from this two-level system I3

k . On level 2,

there is a single module H2
` that shares relevant events with this interface, that is,

(ΣH2
`
∩ ΣI3

k
6= ∅). By construction, the language generated by this module H2

` is

ΣA3
k
-controllable with respect to I3

k due to the multi-level consistency requirement.

For those modules H2
`′ from level 2 that do not share relevant events with I3

k , they do

not possess any relevant events that are in the set ΣA3
k

by equation (5.2). Therefore

by Proposition 5.13, each language H2
`′ for which `′ 6= ` is also ΣA3

k
-controllable with

respect to I3
k .

Furthermore, each interface from level 2, I2
` , and the module from the level 1,

H1
1 , also do not share any relevant events with the event set ΣA3

k
by equations (5.1)

and (5.2). Applying Proposition 5.13 again demonstrates that each of the languages

generated by these DES are ΣA3
k
-controllable with respect to the interface language

I3
k .

Since the module language H1
1 and the interface and module languages I2

` and H2
` ,

where ` = {1, . . . , n2}, are ΣA3
k
-controllable with respect to I3

k , so is the composition

of these languages by Proposition 3.4. Otherwise stated, H1
1 ∩H2

1 ∩ . . .∩H2
n2
∩ I2

1 ∩
. . . ∩ I2

n2
is ΣA3

k
-controllable with respect to the interface language I3

k . Repeating

this logic, this high-level language can be shown to be ΣA3
k
-controllable with respect

to any interface language I3
k , ∀k = {1, . . . , n3}. Therefore we have shown that

Point 3 has been satisfied. Since all level-wise nonblocking and interface consistency

requirements are met for this two-level system, Theorem 5.10 then gives us:

H1
m ∩H2

m ∩ I2
m ∩H3

m ∩ I3
m ∩ I4

m = H1 ∩H2 ∩ I2 ∩H3 ∩ I3 ∩ I4

124

• This logic is repeated until all modules on all q levels have been addressed. Low-

level modules that do not have any interfaces below them are slightly different in

that each module just has the form H i
k. However, they still satisfy the level-wise

nonblocking and interface consistency requirements leading to the desired result. ¤
Proof of Theorem 5.6:

• Beginning at the top of the hierarchy, consider a two-level interface system con-

sisting of a high-level plant G1
1 and supervisor S1

1 , a set of interfaces {I2
` }, and a

corresponding set of low-level plants {G2
` ||(

∣∣∣∣
k∈J2

`

I3
k)} and supervisors {S2

` } where

` = {1, . . . , n2}. Since the overall system is multi-level controllable, we have for the

first level that S1
1 is Σu-controllable with respect to G1

1 ∩
⋂
∀` I2

` . Similarly for the

second level, we have that each S2
` ∩I2

` is Σu-controllable with respect G2
` ∩

⋂
k∈J2

`
I3

k .

These two results provide that this two-level component is level-wise controllable.

Therefore, Theorem 5.11 can be applied to show that the language S1 ∩ S2 ∩ I2 is

Σu-controllable with respect to G1 ∩ G2 ∩ I3. Within a given level, all modules are

included since the system is connected.

• Now consider a interface system with a high-level plant G1
1‖G2

1‖ . . . ‖G2
n2

and super-

visor S1
1‖S2

1‖ . . . ‖S2
n2
‖I2

1‖ . . . ‖I2
n2

, a set of interfaces {I3
k}, and a corresponding set of

low-level plants {G3
k||(

∣∣∣∣
j∈J3

k

I4
j)} and supervisors {S3

k} where k = {1, . . . , n3}. Since

the overall system is multi-level controllable, Points i) and ii) of the level-wise con-

trollability requirement are satisfied. Additionally, Point iii) is known to be satisfied

based on the previous step of this proof. Therefore, Theorem 5.11 can be applied

again to show that the language S1∩S2∩I2∩S3∩I3 is Σu-controllable with respect

to G1 ∩ G2 ∩ G3 ∩ I4.

• This logic is repeated until all modules on all q levels have been addressed. Lower-

level modules that do not have any interfaces below them are slightly different in that

their plant components just have the form Gi
k. However, they still satisfy level-wise

controllability leading to the desired result. ¤

5.3 Supervisor Synthesis

In the previous section we demonstrated that for a given multiple-level interface

system the local properties of Section 5.1 are sufficient for guaranteeing the global

properties of nonblocking and controllability. It was not, however, specified how

to construct the multiple-level interface system. In this section we will outline a

125

systematic approach for constructing the component supervisors for a multiple-level

hierarchical interface-based architecture that are guaranteed to meet the necessary

requirements by construction. The approach presented here follows the work of [39]

that provides results on how to construct high and low-level supervisors that are

optimal with respect to a given specification and set of interfaces in the two-level

case. The extension to the multiple-level case specifically requires that a modular

supervisor be synthesized to meet low and high-level requirements simultaneously.

The details of this extension logically follows the results of [39].

The basic approach of [39] is similar to the traditional approach for constructing

a supremal controllable and nonblocking sublanguage [78]. This involves first the

construction of the language that represents the portion of the system’s uncontrolled

behavior that is allowed by the given specification. This language is then pruned to

remove those strings that violate controllability or nonblocking. This construction is

in general performed on the automaton generator of the language.

For the multiple-level interface-based architecture of this chapter, we will con-

struct a supervisor Si
k with respect to a component plant Gi

k, specification Ei
k, and

set of interfaces I i
k, {I i+1

j } where j represents all those indices in the set J i
k for the

given module. The starting point for the synthesis of the supervisor for the i-kth

module will then be the automaton Zi
k = Gi

k‖Ei
k‖I i

k‖(
∣∣∣∣

j∈Ji
k

I i+1
j). The generated and

marked languages for this automaton lifted to the global alphabet Σ are then:

Z i
k = P−1

Hi
k
(L(Zi

k)) = Gi
k ∩ E i

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j

Z i
mk

= P−1
Hi

k
(Lm(Zi

k)) = Gi
mk
∩ E i

mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

(5.6)

The synthesis of the modular supervisor languages then requires the removal of

those strings that violate any of the properties required of the multiple-level interface-

based approach to control. Any continuations of these removed strings are also re-

moved in order to generate a prefix-closed language. These requirements are captured

in the following definition where Ψ represents a multiple-level specification interface

system similar to Φ. Here Ψ differs from Φ in that it includes modular specifications

in place of modular supervisors since the supervisors have not been synthesized yet.

Definition 5.16. The multiple-level specification interface system Ψ is said to be

multi-level valid with respect to the alphabet partitions given by (5.1) and (5.2), if

126

for all i ∈ {1, . . . , q} and for all k ∈ {1, . . . , ni} corresponding to each i, the following

conditions are satisfied:

1) The event set of Gi
k and Ei

k is ΣHi
k
.

2) I i
k is a command-pair interface. ¦

In the subsequent results of this section, it will be assumed that the multiple-

level specification interface system Ψ is multi-level valid with respect to the alphabet

partitions given by equations (5.1) and (5.2). A language satisfying the remaining

conditions of the definitions of Section 5.1 is then said to be i-kth multi-level interface

controllable (MIC i
k). This specific term is defined below:

Definition 5.17. Let Z ⊆ Σ∗. For system Ψ, the language Z is i-kth multi-level

interface controllable (MICi
k) if for all s ∈ Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Z, the following

conditions are satisfied:

1) EligGi
k∩

⋂
j∈Ji

k
Ii+1

j
(s) ∩ Σu ⊆ EligZ∩Ii

k
(s)

2) EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligGi

k∩Z(s), ∀j ∈ J i
k

3) (∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
),

sρ ∈ I i
k ⇒ (∃l ∈ Σ∗

Li
k
) slρ ∈ Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Z
4) (∀ρ ∈ ΣRi

k
)(∀α ∈ ΣAi

k
) sρα ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
),

sρlα ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Z
5) s ∈ I i

mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
∩ Z ¦

Point 1 of the above definition corresponds to the multi-level controllability re-

quirement, while Points 2-5 correspond to Points 3-6 of the multi-level consistency

requirement.

To formally present this approach to supervisor synthesis, we now define for an

arbitrary language E ⊆ Σ∗ a class of sublanguages of E that are i-kth multi-level

interface controllable for the given multiple-level specification interface system Ψ:

CM i
k
(E) := {Z ⊆ E | Z is MIC i

k with respect to Ψ}
The following proposition then demonstrates that the set CM i

k
(E) is nonempty and

closed under union. This therefore implies that a unique supremal element exists for

this set.

Proposition 5.18. Let E ⊆ Σ∗. For system Ψ, CM i
k
(E) is nonempty and closed

under arbitrary union. In particular, CM i
k
(E) contains a (unique) supremal element

that we will denote sup CM i
k
(E).

127

Proof. See proof in Appendix.

With this result, we can then employ the sublanguage sup CM i
k
(Z i

mk
) to define the

supervisor language for the i-kth module. Specifically, we can let S i
mk

= sup CM i
k
(Z i

mk
)

and S i
k = S i

mk
. This construction and equation (5.6) provide that S i

mk
⊆ Z i

mk
⊆

Gi
mk

and S i
k ⊆ Z i

mk
⊆ Gi

mk
= Gi

k. The resulting supervised behavior is, therefore,

nonblocking since Hi
k = S i

k ∩ Gi
k = S i

k and Hi
mk

= Hi
k ∩ S i

mk
∩ Gi

mk
= S i

mk
. This

construction leads to a marking supervisor in that the supervisor can in essence

unmark strings that are marked in the plant language Gi
mk

. This arises due to the

inclusion of the marked specification and interface languages in the construction of

Z i
mk

as shown in equation (5.6).

Now that we have established that a supervisor exists that is maximally permissive

with respect to a given specification and set of interfaces, we would now like to

demonstrate that this language can be constructed. With this in mind, we will

define the operator ΩM i
k

and show that its fixpoint is sup CM i
k
(Z i

mk
). The language

fixpoint operator ΩM i
k

will be defined in terms of two intermediate operators ΩMNBi
k

and ΩMICi
k

that we will define first. The operator ΩMNBi
k

specifically returns those

strings of a given prefix-closed language that are marked in Z i
mk

.

Definition 5.19. For system Ψ, we define the nonblocking operator ΩMNBi
k

: Σ∗ →
Σ∗, for arbitrary Z ⊆ Σ∗ as follows:

ΩMNBi
k
(Z) := Z ∩ Z i

mk
¦

The next operator ΩMICi
k
removes from a given prefix-closed language those strings

that fail any of the elements of the i-kth multi-level interface controllability definition.

Continuations of the failed strings are also removed to maintain prefix-closure, as

indicated by the ExtZ operator, that returns the continuations in Z of a given set

of strings.

Definition 5.20. For system Ψ, we define the interface controllable operator ΩMICi
k

:

Σ∗ → Σ∗, for arbitrary Z ⊆ Σ∗ as follows:

ΩMICi
k
(Z) := Z − ExtZ(FailICi

k(Z))

128

where

FailICi
k(Z) := {s ∈ Gi

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z | ¬[EligGi

k∩
⋂ Ii+1

j
(s) ∩ Σu ⊆ EligZ∩Ii

k
(s)]

∨ [∃j ∈ J i
k | ¬(EligIi+1

j
(s) ∩ ΣAi

k
⊆ EligGi

k∩Z(s))]

∨ ¬[(∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
)

sρ ∈ I i
k ⇒ (∃l ∈ Σ∗

Li
k
) slρ ∈ Gi

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z]

∨ ¬[(∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
)

sρα ∈ I i
k ⇒ (∃l ∈ Σ∗

Li
k
) sρlα ∈ Gi

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z]

∨ ¬[s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

∩ Z]} ¦

We can now define our fixpoint operator ΩM i
k
.

Definition 5.21. For system Ψ, we define the i-kth fixpoint operator, ΩM i
k

: Σ∗ →
Σ∗, for arbitrary Z ⊆ Σ∗ as follows:

ΩM i
k

:= ΩMNBi
k
(ΩMICi

k
(Z)) ¦

The following important result demonstrates that if ΩM i
k
(Z i

k) reaches a fixpoint

in a finite number of steps, then the fixpoint is equal to sup CM i
k
(Z i

mk
).

Theorem 5.22. For system Ψ, if there exists j ∈ {0, 1, 2, . . .} such that Ωj

M i
k
(Z i

k) is

a fixpoint, then Ωj

M i
k
(Z i

k) = sup CM i
k
(Z i

mk
).

Proof. Proof of this result is identical to the proof of Theorem 8 in [7], after relabeling.

Finally, the following demonstrates that if the resulting supremal element is em-

ployed as our supervisor language, then the necessary interface-based requirements

of Section 5.1 are satisfied.

Corollary 5.23. For system Ψ, if there exists j ∈ {0, 1, 2, . . .} such that Ωj

M i
k
(Z i

k)

is a fixpoint, then the system Φ with S i
mk

= Ωj

M i
k
(Z i

k) and S i
k = S i

mk
satisfies Points

3, 4, 5, and 6 of the multi-level consistency definition, Point ii) of the multi-level

controllability definition, and the multi-level nonblocking definition.

Proof. See proof in Appendix.

129

The fixpoint operators that have been presented so far are language-based. The

specific supervisor synthesis algorithms presented in [7] for the two-level case are,

however, automata-based. While we will not present a specific algorithm for automata-

based supervisor construction, like [7] we can show an equivalence between removing

strings from a language and removing states from an automaton.

The basic approach to showing the equivalence between a language-based algo-

rithm and an automata-based algorithm is to show that if a string that reaches a

state q fails to meet some necessary condition, then all strings that reach this state

q will also fail to meet the necessary condition. This way, removing a state from an

automaton only removes strings that violate the given requirement. The following

proposition from [7] addresses the property of blocking, that is, those strings that

cannot be extended to a marked string.

Proposition 5.24. [7] Let G = (Q, Σ, δ, q0, Qm). It thus follows that for all s, t ∈
L(G), if δ(q0, s) = δ(q0, t) then

s /∈ Lm(G) ⇔ t /∈ Lm(G)

The following proposition similarly addresses the requirements of the i-kth multi-

level interface controllability definition. In the statement of the proposition, we will

employ the automaton H i′
k which is equal to the automaton Gi

k‖I i
k‖(

∣∣∣∣
j∈Ji

k

I i+1
j)‖Si

k,

with self-loops added for all events in the set Σ− ΣHi
k
. Therefore, H i′

k has an event

set of Σ and L(H i′
k) = Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩ S i
k.

Proposition 5.25. For the system Φ, Let H i′
k = (Qi

k, Σ, δi
k, q

i
0k

, Qi
mk

). It thus follows

that for all s, t ∈ L(H i′
k), if δi

k(q
i
0k

, s) = δi
k(q

i
0k

, t) then

1) EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu * EligSi
k∩Ii

k
(s) ⇔ EligGi

k∩
⋂ Ii+1

j
(t) ∩ Σu * EligSi

k∩Ii
k
(t)

2) EligIi+1
j

(s) ∩ ΣAi+1
j
* EligHi

k
(s) ⇔ EligIi+1

j
(t) ∩ ΣAi+1

j
* EligHi

k
(t), ∀j ∈ J i

k

3) (∀s, t ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) [sρ ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
)

slρ /∈ Hi
k∩I i

k∩
⋂

j∈Ji
k
I i+1

j] ⇔ [tρ ∈ I i
k]∧ [(∃l ∈ Σ∗

Li
k
) tlρ /∈ Hi

k∩I i
k∩

⋂
j∈Ji

k
I i+1

j]

4) (∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) [sρα ∈ I i

k]∧ [(∃l ∈ Σ∗
Li

k
) sρlα /∈ Hi

k∩I i
k∩

⋂
j∈Ji

k
I i+1

j] ⇔
[tρα ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
) tρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j]

5) [s ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) sl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
] ⇔

[t ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) tl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
]

Proof. See proof in Appendix.

130

With the above two propositions, it becomes apparent that an application of the

language-based fixpoint operator ΩM i
k

is equivalent to removing at least one state

from the automaton H i′
k , or results in a fixpoint. The removal of a state consequently

removes strings with continuations from that state from the language L(H i′
k). This

is consistent with the definition of the operator ΩM i
k
. Assuming that we have regular

languages, our automata generators have a finite number of states. Therefore, even

a naive algorithm that tests each state of an automaton one at a time, and removes

states that are not coreachable or that are reached by strings that violate i-kth multi-

level interface controllability, will reach a fixpoint in finite time.

In this work we will not provide an algorithm for synthesizing the component

supervisors. We believe, however, that an algorithm can be developed that has

polynomial complexity in the number of states and events of a given module with

its interfaces. Verifying nonblocking and each of the points of the i-kth multi-level

interface controllability definition equates to comparing the feasible event sets of

individual automata (controllability tests) and performing reachability searches, to

test whether a marked state or a given request event or answer event can be reached.

In order to perform these tests, the transition structures of the automaton H i′
k and

the individual automata from which H i′
k is composed must be stored. Reachability

information and feasible event sets of the individual components are stored in the

transition structures of their automata, while the automaton H i′
k provides a mapping

between states of the components that are reached by the same given string. Efficient

state-based implementation of supervisor synthesis has already been developed in

the two-level case [7]. This could provide a good starting point for developing a

supervisor synthesis algorithm in the multiple-level case.

5.4 Interface Synthesis

In the previous section we outlined an approach for synthesizing supervisors for

each of the modules in a multiple-level architecture. An area that has not yet been

addressed in the literature is how to synthesize the interfaces. Traditionally, these

interfaces have been arrived at based on designer understanding of the system. The

problem that arises here is that a poor choice of interface could make it impossible

to meet the necessary requirements; that is, a resulting modular supervisor language

could be the empty set. Even if nonempty modular supervisor languages exist, the

131

chosen interface languages could be overly restrictive. We would like to propose here

one possible methodology for constructing an interface language I i
k in conjunction

with the supervisor language for the i-kth module.

The idea behind the approach suggested here is that each interface be viewed as

an abstraction of its associated controlled module. This point of view is consistent

with the idea that the interfaces serve to hide information between levels of the

hierarchy. This notion of employing abstraction has recently been a common theme

in the field of supervisory controller design. Existing works, however, place strict

requirements on their abstractions. Here we simply propose to employ the natural

projection operation. We propose to build off the supervisor synthesis approach of

the Section 5.3. Specifically, the idea is that the interface language is allowed to

change as the MIC i
k sublanguage is constructed. This approach can help prevent

the resulting control from being overly restrictive. While this approach will provide

an explicit methodology for constructing interfaces, the overall MLIBC approach

would still rely on heuristics in the choice of the system partition and in the choice

of request and answer events.

Based on the preceding discussion, the interface languages will be defined as in

equation (5.7) for a given language Z ⊆ Z i
mk

and a given set of request and answer

events. Here the language Z is meant to represent an intermediate sublanguage of

Z i
mk

as strings are removed to make the language i-kth multi-level interface control-

lable. While the following definitions and proofs are presented in terms of languages,

the result that removing strings from a language is equivalent to removing states

from the automaton generator is still valid.

L(I i
k) = PIi

k
(Z)

Lm(I i
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(I i

k) (5.7)

A couple of things to notice about the above construction of the interfaces is that

the projection operation does not guarantee that the interface automaton I i
k will

have fewer states than the automaton which generates Z. However, in many cases

I i
k will be smaller. Requiring that the projection additionally be an observer will

guarantee that the projected language is smaller than the original language [72]. We

will not, however, require the observer property.

The construction of equation (5.7) also does not guarantee that I i
k will have the

132

form of a command-pair interface. As such, it is necessary to modify the definition of

Zi
k from its form in equation (5.6). The basic idea is to add another “specification”

Ei
altk

which imposes the requirement that request and answer events alternate, that is,

Lm(Ei
altk

) = (ΣRi
k
.ΣAi

k
)∗. In terms of the lifted language, E i

altk
= P−1

Ii
k

(L(Ei
altk

)). Since

we are constructing the interface language I i
k at the same time as we are constructing

the associated supervisor language, we will define Zi′
k = Gi

k‖Ei
k‖Ei

altk
‖(

∣∣∣∣
j∈Ji

k

I i+1
j). It

then follows that:

Z i′
k = P−1

Hi
k
(L(Zi′

k)) = Gi
k ∩ E i

k ∩ E i
altk

∩
⋂

j∈Ji
k

I i+1
j

Z i′
mk

= P−1
Hi

k
(Lm(Zi′

k)) = Gi
mk
∩ E i

mk
∩ E i

altmk
∩

⋂

j∈Ji
k

I i+1
mj

(5.8)

In a sense, the above definitions provide that E i
altk

is our first guess at the interface

language I i
k. As Z i′

k is modified to generate an MICi
k sublanguage, so too will I i

k

be altered. The simplest approach that could be applied here would be to employ

the same supervisor synthesis algorithm that would be employed if the interface was

predetermined. The difference is that any time a string was removed from Z i′
k , or a

state was removed from Zi′
k , the interface I i

k would be recalculated based on equation

(5.7).

Even though in this modified approach I i
k is allowed to change, it would still

remain a command-pair interface. This fact is demonstrated by the following result.

Proposition 5.26. If the reduced interface DES I i
k satisfies the relations of equation

(5.7) where Z ⊆ Z i′
mk

, then I i
k is a command-pair interface.

Proof. Point A of Definition 5.1 can be demonstrated for the reduced I i
k by the

following logic. First note the definition of I i
k in equation (5.7) and the fact that it

is given that Z ⊆ Z i′
mk

.

L(I i
k) = PIi

k
(Z) ⊆ PIi

k
(Z i′

mk
) (5.9)

Now noting the definition of Z i′
mk

given in equation (5.8), we have that:

PIi
k
(Z i′

mk
) ⊆ PIi

k
(E i

altmk
) = (ΣRi

k
.ΣAi

k
)∗ (5.10)

Combining equations (5.9) and (5.10) provides the desired satisfaction of Point A,

L(I i
k) ⊆ (ΣRi

k
.ΣAi

k
)∗. Point B of Definition 5.1 is satisfied by the construction of I i

k

given in equation (5.7), Lm(I i
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(I i

k).

133

Furthermore, even though the interface I i
k is changing, it will not change the

current form of the intermediate language Z being constructed in the supervisor

synthesis algorithm. The idea is that any prior analysis that led to Z will not be

invalidated by changing to a reduced interface. More specifically, if a string s satisfies

all five points of Definition 5.17 for an interface language I i
k, then s will still satisfy

the definition for a reduced interface language I i′
k ⊆ I i

k as long as the relations of

equation (5.7) still hold. This fact is demonstrated by the following proposition.

Proposition 5.27. Let s ∈ Gi
k ∩I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩Z satisfy all five points of Defini-

tion 5.17 with respect to the interface language I i
k. If the reduced interface language

I i′
k ⊆ I i

k satisfies the relations of equation (5.7) where Z ⊆ Z i′
mk

, then all five points

of Definition 5.17 are still satisfied by s with respect to the new interface language

I i′
k .

Proof. First note that it is given that I i′
k satisfies the relations of equation (5.7),

therefore:

L(I i′
k) = PIi

k
(Z)

Lm(I i′
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(I i′

k) (5.11)

By equation (5.11) we have that I i′
k = P−1

Ii
k

(PIi
k
(Z)). Therefore, Z ⊆ I i′

k ⊆ I i
k

and:

Z ∩ I i
k = Z = Z ∩ I i′

k (5.12)

Based on equation (5.12), the fact that s ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Z means that

s ∈ Gi
k∩I i′

k ∩
⋂

j∈Ji
k
I i+1

j ∩Z also. With these facts in place, we can now demonstrate

that each point of Definition 5.17 is still satisfied by s for this reduced interface

language I i′
k .

1. It is given that Point 1 is satisfied for the original interface language I i
k, there-

fore:

EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii
k
(s)

Based on equation (5.12) we then have that Point 1 is still satisfied for the

reduced interface:

EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii′
k
(s)

134

2. Since Point 2 is satisfied for the original interface I i
k, it is automatically satisfied

for the reduced interface I i′
k since Point 2 does not depend on I i

k.

3. Point 3 is also satisfied for the original interface language I i
k:

(∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i

k

⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈ Gi

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z (5.13)

Since I i′
k ⊆ I i

k, sρ ∈ I i′
k implies that sρ ∈ I i

k. Therefore by equation (5.13),

sρ ∈ I i′
k provides that (∃l ∈ Σ∗

Li
k
) slρ ∈ Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Z. Furthermore,

using equation (5.12) again we have that Point 3 is also satisfied for I i′
k :

(∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i′

k

⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈ Gi

k ∩ I i′
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z

4. Recalling that Point 4 is satisfied for I i
k:

(∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) sρα ∈ I i

k

⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩ I i
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z (5.14)

Since I i′
k ⊆ I i

k, sρα ∈ I i′
k implies that sρα ∈ I i

k. Therefore by equation (5.14),

sρα ∈ I i′
k provides that (∃l ∈ Σ∗

Li
k
) sρlα ∈ Gi

k∩I i
k∩

⋂
j∈Ji

k
I i+1

j ∩Z. Furthermore,

using equation (5.12) again we have that Point 4 is also satisfied for I i′
k :

(∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) sρα ∈ I i′

k ⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩ I i′
k ∩

⋂

j∈Ji
k

I i+1
j ∩ Z

5. It is further given that Point 5 is satisfied for I i
k:

s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

∩ Z

Since each successive interface satisfies a version of equation (5.11), Lm(I i
k) =

(ΣRi
k
.ΣAi

k
)∗ ∩ L(I i

k) and Lm(I i′
k) = (ΣRi

k
.ΣAi

k
)∗ ∩ L(I i′

k). Therefore the fact that

I i′
k ⊆ I i

k implies that I i′
mk
⊆ I i

mk
also. Hence, s ∈ I i′

mk
implies s ∈ I i

mk
which in

turn provides that (∃l ∈ Σ∗
Li

k
) sl ∈ Gi

mk
∩I i

mk
∩⋂

j∈Ji
k
I i+1

j ∩Z. Furthermore since

135

it is given that Z ⊆ Z i′
mk

, equation (5.8) provides that Z ⊆ E i
altmk

. Therefore

by equation (5.11) and the fact that Z ⊆ I i′
k ,

Z = Z ∩ Z ⊆ E i
altmk

∩ I i′
k = I i′

mk
(5.15)

Now since Z ⊆ I i′
mk

and I i′
mk
⊆ I i

mk
, we have that Z ∩ I i

mk
= Z ∩ I i′

mk
∩ I i

mk
=

Z ∩ I i′
mk

. Hence, Point 5 still holds for the reduced interface language:

s ∈ I i′
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i′

mk
∩

⋂

j∈Ji
k

I i+1
mj

∩ Z

With the above two propositions, we have demonstrated that we can employ the

following naive algorithm. Begin with the automaton Zi′
k and construct an interface

language according to equation (5.7) where Z = P−1
Hi

k
(L(Zi′

k)). Commence to con-

struct a supervisor language in the manner proposed by the previous section, that

is, remove states from Zi′
k if they are reached by strings that fail any of the points

of Definition 5.17 or if they are not coreachable. Every time a state is removed,

recalculate the interface language again according to equation (5.7). This process

is repeated until the resulting automaton is nonblocking and generates a language

that is i-kth multi-level interface controllable or there are no states remaining. The

resulting interface I i
k is then the last one constructed by equation (5.7).

A drawback of this new approach is that it requires the additional computation

of performing a natural projection to generate each new version of the interface. In

the worst case, the computation of a projection can have exponential complexity

and the minimal automaton that generates the projected language can actually be

larger than the minimal automaton that generates the original language. In many

instances, however, this is not the case. Furthermore, it is the goal of this approach to

keep the modules small enough that the complexity of the projection operation will

not be prohibitive. Additionally, we believe that the ultimate resulting interface can

be constructed incrementally as the supervisor is synthesized, rather than performing

a full natural projection each time a state is removed from Zi′
k .

Another limitation of this approach to interface construction is that the resulting

interface is not unique and depends on the order in which states are removed from

Zi′
k . Also, there is no interface for which the resulting language is supremal. This,

136

however, is more of a drawback to the overall interface-based approach to control,

rather than a limitation of this particular approach to interface synthesis. These

elements of interface construction are illustrated by the following example.

Example 5.28. Consider the system Z shown in Fig. 5.5 where ΣR = {r1, r2} and

ΣA = {a1, a2}. For this given system, the interface I constructed by equation (5.7) is

shown on the left of Fig. 5.6. For this interface, the language L(Z) fails to be multi-

level interface controllable since those strings that reach state 1 cannot be extended

to the request event r2 by low-level events, that is, Point 3 of Definition 5.17 is

violated. The same is also true for those strings that reach state 2 in that they

cannot be extended to the request event r1 by low-level events. Removing state

1 and subsequently the unreachable state 3, results in a DES that is multi-level

interface controllable with respect to the interface I1 shown in Fig. 5.6 and generated

by equation (5.7). If rather state 2 and state 4 are removed, then the resulting

DES is multi-level interface controllable with respect to the interface I2 constructed

according to equation (5.7) and shown in Fig. 5.6. Therefore, depending on whether

state 1 or state 2 was removed first, the resulting interface is different. Additionally,

the languages generated by the two interfaces are incomparable.

Z :

0

1 3

 a
 1

2 4

 a
 2

 r
 1

 l
 1

 r
 2

 l
 2

Figure 5.5: Example system for interface synthesis

 I :

 a
 1

 r
 1

 r
 2

 a
 2

 I :

 a
 1

 r
 1

 I :

 r
 2

 a
 2

 1 2

0

1

2

0

01

1

Figure 5.6: Example interfaces for system in Fig. 5.5

137

5.5 Implementation Examples and Discussion

In this section we will demonstrate an application of the MLIBC approach to an

extension of the FMS example first introduced in Chapter 1. This expanded example

is shown in Fig. 5.7 and is employed in order to provide a resulting architecture with

multiple levels. In this version of the FMS, machines Robot2 and Mill, and buffers B3

and B9 are new. These new components and a modified AM are pictured in Fig. 5.8.

In the process of this application, we will provide some heuristics for making some

of the necessary design choices. At the end of this section, we will also discuss the

complexity of this approach, in particular, its scalability as compared to the original

two-level architecture.

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Robot2B9

B3

Mill

 21 22 33
 38 63

 30 65

 34

 51,53 52,54

 37,39

 64 91 94

 41 42

 92 93

 71 74

 72 73

 81 82

H 1
 2

H 2
 3

H 1
 3

H 1
 1

H 2
 2

Figure 5.7: Extended FMS example

5.5.1 Flexible Manufacturing System (FMS) example

Application of the MLIBC approach depends in part on designer understanding.

Specifically, how the system components are partitioned into modules, how request

and answer events are chosen, and how interfaces are constructed are all areas where

designer intuition could enter in. In this section we will present a procedure for

implementing the MLIBC approach where we provide some heuristics for making

138

 B9 : Mill :

 AM :

 Robot2 : 91

 94

 93

 92

 41

 42

 64

 91

 61

 63

 64

 65

 64

 B3 : 92

 93

 42

 41

Figure 5.8: Additional components of the extended FMS example

some of the necessary design choices. Ultimately, it may be necessary to try multiple

combinations to find a satisfactory solution.

Algorithm 5.29. Multi-Level Interface-Based Control Construction

Step 1: Group system components into modules - The grouping of the components

of the global system into modules has many different possibilities that in general do

not lead to a unique solution. The alphabet partitions of equations (5.1) and (5.2)

must be kept in mind during the grouping process. For one, all interaction between

modules must take place through interfaces and each interface is completely disjoint

from all other interfaces. Additionally, while each module can interact with multiple

modules on the level of hierarchy immediately below it, it can only interact with a

single module on the level of hierarchy above it. The strict ordering imposed by the

alphabet partition also implies that there can be no closed loops formed among the

modules, that is, a module cannot be both simultaneously above and below another

module in the hierarchy.

We will now present one heuristic approach for grouping the components. To start,

pick a specification which is on “the edge” of the system. By the edge, what is meant

139

is a specification that interacts with plant components that do not interact with a

lot of other specifications. If this is not possible, all it means is that this module

or the module that follows on the next level of hierarchy will have to include more

specifications and hence will be larger. For our extended FMS example, inspection

of Fig. 5.7 indicates the most logical specification choice would be the buffer B3.

However, in order to generate an example with multiple levels with multiple modules,

we will begin with specification B2. The plant components which share relevant

events with B2 are the machines Con2 and Robot. Con2 does not interact with any

other specifications, so it is indeed on the “edge” of the system. Robot, however, also

shares relevant events with the specifications B4, B6, and B7. Since this module we

are building can only interact with a single module on the next level of hierarchy, we

will include B4 in this first module and B6 and B7 will be included in the module

on the next level. Since the specification B4 also shares relevant events with the

machine Lathe, the plant for this first module will be G3
1 = Con2‖Robot‖Lathe and

the corresponding specification will be E3
1 = B2‖B4. The superscript refers to the

level of the hierarchy while the subscript refers to the index within a given level.

Here we assume we know the index of this level of the hierarchy for the purposes of

clarity, but in reality we will not know this until the partitioning process has been

completed.

Considering the module on the next level of hierarchy, it is defined by those

specifications which share relevant events with the module from the previous level.

Examining the plant components associated with the specifications of this module,

determine which specifications they further interact with. For our FMS example, the

specifications for this module on the second level of hierarchy are B6 and B7. These

specifications interact with machines AM and Con3, which further interact with

specifications B8 and B9. Since B8 is on the “edge” of the system, it is a good choice

for another lower-level module. Buffer B9, however, interacts with other components

of the system so it is a good choice for the next level of hierarchy. Therefore letting

E3
2 = B8 and E2

1 = B6‖B7 will satisfy the requirement that each module can interact

with multiple lower-level modules, but only a single higher-level module. Looking at

the plant components which interact with the specifications, both B7 and B8 share

relevant events with Con3. In our experience, we have determined that in most cases

it is preferable to group a plant component with the lowest-level specification with

140

which it shares events. Therefore, the corresponding plants for each of these modules

end up being G3
2 = Con3‖PM and G2

1 = AM.

This process of moving up levels of the hierarchy and backtracking as necessary

to meet the conditions of the architecture continues until all specifications have been

addressed. Moving up a level of the hierarchy in our example, the specification

associated with the next module is E1
1 = B9. The plant component which shares

relevant events with this specification is Robot2. This plant component in turn

interacts with the specification B3. Specification B3 could logically be associated

with a module on the next level of the hierarchy, however, in order again to generate

an example which has multiple levels with multiple modules, we will associate this

specification with a lower-level module. Therefore, E2
2 = B3. Noting that B3 and B9

both interact with the plant component Robot2, we will again employ the convention

of grouping plant components with the lowest-level specification with which it is

associated. Therefore, the plant corresponding to B3 is G2
2 = Robot2‖Mill. Since all

of the plant components relevant to B9 are grouped with lower-level modules, the

“plant” associated with this specification does not introduce any further restriction

of behavior. Therefore, G3
1 is an automaton that generates the language Σ∗.

Since there are no further specifications or plant components, the grouping is

finished. The dashed boxes in Fig. 5.7 demonstrate how the global system has been

partitioned for this example. Figure 5.9 illustrates the hierarchy imposed upon the

system and the flow of information.

Step 2: Determine sets of request and answer events - Examine the plant components

of each module and choose which events are to comprise the request and answer

events associated with each interface. This again is a heuristic process that depends

on designer understanding of the system and may require some iteration.

Here we provide some guidelines to help with the process. First, all relevant events

shared between any pair of modules must be included in either the request or answer

event set for the associated interface. Additionally, it is often helpful to think of

request events as events that start a process and answer events as events that finish

a process. Examining the plant automata of a module can give some indication of

which events begin and which ones finish a process. It is also often helpful that the

request events be controllable.

For our example, the events shared between module H3
1 and module H2

1 are 30 and

141

Figure 5.9: Hierarchy imposed on the extended FMS example

38. Examining the automaton model of Robot in Fig. 3.10, it can be seen that both

of these events represent the completion of a process. Therefore, we will consider

them answer events ΣA3
1

= {30, 38}. It can also be seen by inspection that the events

that start these two processes correspond to events 39 and 37 respectively. In this

case, however, we will take some liberties in what we consider a “process.” We will

consider our process to be the successive occurrence of two smaller operations. In

this instance, the request event is the beginning of the first operation and the answer

event is the completion of the second operation. Therefore, we will consider event

33 to be the request event corresponding to both answers ΣR3
1

= {33}. Following

this general procedure, we further arrive at the following sets of request and answer

events: ΣR3
2

= {71}, ΣA3
2

= {74}, ΣR2
1

= {61}, ΣA2
1

= {64}, ΣR2
2

= {91}, and

ΣA2
2

= {94}.
Step 3 (optional): Assume a form for each of the interface automata - Based on the

set of request and answer events from the previous step of this procedure, along with

the designer’s understanding of the system, a form for the interface models may be

assumed. Based on the requirements of the MLIBC approach, the interfaces must

satisfy the command-pair interface format of Definition 5.1. Often a good interface

can be generated based on designer understanding of the system. A bad choice of

interface, however, can lead to overly restricted behavior. If a designer is having

trouble arriving at a good interface, the interface synthesis approach of Section 5.4

142

can be employed as part of Step 4 of this procedure.

Step 4: Synthesize supervisors (and optionally interfaces) for each of the lowest-level

modules - If interfaces have been assumed in the previous step of this procedure,

then supervisors can now be synthesized by the approach of Section 5.3. In this

step, we will address those modules that do not have any modules directly below

them in the hierarchy. The construction of supervisors then approximates the low-

level supervisor synthesis algorithm of [39] with the only difference being with regard

to satisfying Point 4 of the multi-level consistency requirement. The basic idea is that

the interface, specification, and plant component automata associated with a given

module are composed. States of this resulting automaton are then removed if they

fail any of the necessary low-level requirements or if they are not coreachable. The

low-level requirements needed for these modules correspond to Point 1 and Points

3-5 of Definition 5.17.

If an interface has not been assumed for a given module by the previous step, then

it is possible to synthesize an interface along with the supervisor for a given module.

Specifically, for a given set of request events ΣRi
k

and answer events ΣAi
k
, the interface

can at first be assumed to be the DES that generates the language (ΣRi
k
.ΣAi

k
)∗. The

start of the supervisor synthesis process is then to compose this interface automaton

with the corresponding specification and plant automata. The interface is then

considered to be the natural projection of this composition as prescribed in equation

(5.7). The states of the resulting composed automaton are then examined to see if

they satisfy the necessary low-level requirements and are coreachable. If a state fails a

requirement, it is removed and the corresponding interface is then recalculated again

according to equation (5.7). Once all states have been examined, then the resulting

automaton generates the supervisor language for this module and the projection of

the supervisor language is the interface language. Note, the order in which the states

are evaluated will affect the resulting interface and in turn the resulting supervisor.

For our example, the lowest-level modules correspond to H3
1 , H3

2 , and H2
2 . Specif-

ically for module H3
1 , the supervisor S3

1 is built to control the “plant” G3
1 to meet

the low-level requirements with respect to the specification E3
1 and request and an-

swer events ΣR3
1

and ΣA3
1
. The resulting interfaces for these modules are included in

Fig. 5.10.

Step 5: Synthesize supervisors (and optionally interfaces) for modules on the next

143

 I : I :

 91

 94

 71

 74

 I : I :

 61

 64

 33

 30,38

 1 1
 2

 2
 2

 2

 3

 3

Figure 5.10: Resulting interfaces for the extended FMS example

level of hierarchy - Move up a level of hierarchy to address those modules directly

above the ones for which supervisors were just constructed. If there are no further

levels above the current module, then the associated supervisor can be constructed

using the high-level supervisor synthesis algorithm of [39]. In the multiple-level case,

the same high-level requirements are employed, so the algorithm of [39] can be used

directly.

If there are levels above a module and interfaces have been assumed, then the

approach of Section 5.3 must be employed. If interfaces have not yet been assumed,

then they can again be synthesized in conjunction with the supervisors. This process

is identical to Step 4, except now both high and low-level requirements must be

satisfied. In other words, each state must be reached by strings that satisfy each of

the points of the i-kth multi-level interface controllability definition and each state

must be coreachable.

For those modules considered in the previous step, the modules that follow them

are H2
1 and H1

1 . However, since H2
1 precedes H1

1 in the hierarchy, we will wait to

address the supervisor for H1
1 until later. Therefore, for module H2

1 the synthesis

algorithms are applied to build a supervisor S2
1 for the plant G2

1 in order to satisfy

requirements with respect to the specification E2
1 , the interfaces that precede the

module {I3
1 , I

3
2}, and the request and answer events ΣR2

1
and ΣA2

1
.

Note that in the process of building the supervisor for the module H2
1 , the pre-

ceding modules H3
1 and H3

2 did not need to be considered at all. All necessary in-

formation was passed through the interfaces. This illustrates how global properties

are met through the construction of local supervisors.

Step 6: Repeat until done - Repeat Step 5 until supervisors have been constructed

144

for all modules. At the conclusion of the procedure, the control implemented by the

local supervisors and interfaces will provide safe, nonblocking control.

In our example, the only module left is H1
1 . For this module, the high-level

synthesis algorithm is applied to generate a supervisor S1
1 for the plant G1

1 with

respect to the specification E1
1 and the interfaces I2

1 and I2
2 . ¦

Table 5.1 summarizes the procedure applied in this example.

Table 5.1: Application of Algorithm 5.29 to extended FMS example
Step Automaton States Notes

Built (Transitions)
1 G3

1 = Con2‖Robot‖Lathe 24(92)
E3

1 = B2‖B4 8(22)
G3

2 = Con3‖PM 6(14)
E3

2 = B8 3(4)
G2

1 = AM 4(5)
E2

1 = B6‖B7 6(14)
G2

2 = Robot2‖Mill 6(14)
E2

2 = B3 3(4)
G1

1 - G1
1 generates the language Σ∗

E1
1 = B9 2(2)

2 E3
alt1

2(3) ΣR3
1

= {33} ΣA3
1

= {30, 38}
E3

alt2
2(2) ΣR3

2
= {71} ΣA3

2
= {74}

E2
alt1

2(2) ΣR2
1

= {61} ΣA2
1

= {64}
E2

alt2
2(2) ΣR2

2
= {91} ΣA2

2
= {94}

3 skipped
4 Z3

1 = G3
1‖E3

1‖E3
alt1

36(65) uncontrolled subsystem
S3

1 27(46) component supervisor
I3
1 2(3) higher-level interface

Z3
2 = G3

2‖E3
2‖E3

alt2
6(6) uncontrolled subsystem

S3
2 6(6) component supervisor

I3
2 2(2) higher-level interface

Z2
2 = G2

2‖E2
2‖E2

alt2
6(6) uncontrolled subsystem

S2
2 6(6) component supervisor

I2
2 2(2) higher-level interface

5 Z2
1 = G2

1‖E2
1‖E2

alt1
‖I3

1‖I3
2 80(182) uncontrolled subsystem

S2
1 18(29) component supervisor

I2
1 2(2) higher-level interface

6 Z1
1 = G1

1‖E1
1‖I2

1‖I2
2 8(12) uncontrolled subsystem

S1
1 6(8) component supervisor

For the purposes of comparison, the composition of all plant and specification

components in the extended FMS example results in an automaton with 291,456

states and 1,226,672 transitions. Furthermore, the supremal controllable sublanguage

for the monolithic system is generated by an automaton with 20,232 states and

80,028 transitions. A traditional modular solution greatly reduces the complexity of

145

generating control for this example, but results in blocking.

In the generation of the multiple-level hierarchical interface-based control, the

largest automaton that was constructed had 80 states and 182 transitions. This

automaton was built in the process of constructing the supervisor for module H2
1 .

The resulting global closed-loop behavior is safe and nonblocking. The size of the

automata built in this process are substantially smaller than those required in build-

ing the monolithic supervisor, thereby giving some indication of the advantage of

this approach. Granted, the process by which the sublanguages are constructed in

the interface-based solution is different than the process used for constructing the

traditional supremal controllable sublanguage, as was done in the monolithic case.

The real drawback of the interface-based solution, however, is the loss of optimality.

Specifically, the interface-based control only allows for four pieces to be active in the

factory at any given time. The monolithic solution allows for a maximum of eight

pieces to be active at one time.

If instead a two-level architecture is employed with low-level modules consisting

of H2
2 , H3

1 , and H3
2 , and a high-level module made up of the remaining components,

then the largest automaton that needs to be constructed has 320 states and 888

transitions. This solution allows a maximum of five pieces to be active at any given

time.

For the original FMS employed in the examples of Section 3.4.2 and Section 4.6

and shown in Fig. 1.3, the MLIBC approach can also be employed. For the original

AM and a high-level with the partitioning of module H2
1 and two low-level modules

with the partitioning of H3
1 and H3

2 , the largest automaton that must be constructed

again has 80 states and 182 transitions. This compares favorably to the monolithic

system that requires an automaton with 13, 248 states and 46, 424 transitions be

constructed. In terms of permissiveness, the monolithic solution allows six pieces to

be active in this FMS example at the same time, while the interface-based solution

only allows three pieces to be operated on at one time.

5.5.2 Complexity discussion

For a two-level interface-based architecture, efficient algorithms for the verifica-

tion of properties [37] and the synthesis of component supervisors [7] have been

developed. For each module with its interfaces, these algorithms have complexity

146

that is polynomial in the number of states and events. Since the high-level module

is composed with all of its interfaces at once, it is in most cases the factor limiting

how large of a system can be constructed and verified. It has been demonstrated

that an interface-based approach is often worthwhile in terms of complexity savings

if the interfaces are at least an order of magnitude smaller than their corresponding

low-level modules [41].

Since it is required that the low-level modules be completely disjoint from one

another, if the global system is made larger, it is often the case that the high-level will

grow and the number of low-level modules will increase. Therefore, the scalability

of a two-level architecture is limited since the number of states of a synchronous

composition grows exponentially with the number of components. This is where the

advantage of a multiple-level architecture becomes apparent. Figure 5.11 illustrates

a possible partitioning of a larger version of the FMS example used in the previous

section for a two-level architecture. In the example of the previous section, the

proposed two-level partitioning resulted in a high-level consisting of four automata

and three low-level components. For the expanded system of Fig. 5.11, the high-level

has grown to include thirteen automata and the number of low-level components has

increased to six.

For the multiple-level architecture proposed in this chapter, we have not yet de-

veloped efficient algorithms for the verification of properties or the synthesis of com-

ponent supervisors. We believe, however, that algorithms can be developed that will

have polynomial complexity in the number of states and events of a given module

and its interfaces just like in the two-level case. In the case of interface synthesis,

however, we are not as certain that a polynomial complexity algorithm can be de-

veloped. The problem that arises here is that the natural projection operation can

in the worst case have exponential complexity. The goal, however, would be to keep

the individual modules small enough that the overall complexity is not prohibitive.

As stated earlier, the true advantage of the multiple-level architecture is its scal-

ability. We have argued that in the two-level case as the global system grows the

high-level will grow and the number of low-level components will increase. In the

multiple-level case, however, it is possible to limit the size of the modules and the

number of corresponding low-level components by increasing the number of levels in

the hierarchy. Therefore, we can in effect put a bound on the number of interfaces

147

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Robot2B9

B3

Mill

H 1
 2

H 2
 2

H
 1

H 3
 2

H 4
 2

H 6
 2

H 5
 2

Figure 5.11: Two-level partition of a larger FMS example

that any given module must be analyzed with respect to at once. Considering the

FMS example from the previous section with the multiple-level partitioning shown in

Fig. 5.7, the most automata in a given module was five and the maximum number of

interfaces for a given module was three. For the larger FMS example of this section,

Fig. 5.12 shows a possible partitioning for the multiple-level architecture. For this

partitioning, the most automata in a given module is also five, while the maximum

number of interfaces for a single module has increased to four. Here one can see

the size of the individual modules with their interfaces has stayed roughly the same,

even though the global system has grown significantly.

5.6 Chapter Summary

In this chapter we have provided requirements for a multiple-level interface-based

architecture by which global controllability and nonblocking can be verified locally.

This general architecture is an improvement over the special two-level case of [41] in

that it allows the global system to be partitioned into smaller modules, thereby lead-

ing to less complexity and improved reconfigurability, though at the possible expense

148

Robot AM

Con3

B8

PM

B4

Lathe

B2Con2

B7

B6

B7

Robot2B9

B3

Mill

H 1
 2

H 2
 3

H 1
 3

H 1
 1

H 2
 2

H 3
 3

H 1
 4

H 2
 4

H 4
 4

H 3
 4

H 4
 3

Figure 5.12: Multiple-level partition of a larger FMS example

of increased restrictiveness. Furthermore, the interface consistency requirements of

this chapter are shown to be a relaxation of the corresponding requirements of [40].

This chapter also extended the work of [39] to show that a supervisor for each module

that is maximally permissive with respect to a given plant, specification, and set of

interfaces can be synthesized. It is also demonstrated that these supervisors can be

constructed employing automata-based methods.

The use of interfaces, therefore, enables the global controlled system to be verified

and designed employing only local information, greatly mitigating the state-space

explosion problem in most cases. The general interface-based approach is different

than many existing techniques for addressing the complexity problem in that it is

truly modular. Most of the techniques developed recently [17] [60] [76], including the

IHSC and EBCR approaches of this dissertation, are compositional approaches that

build up the global system employing abstraction. These other approaches are thus

dependent on their abstraction for the amount of complexity reduction they are able

to achieve.

One of the limitations of an interface-based approach to supervisory control is

149

that in many cases it produces suboptimal behavior. An interface-based approach is

also difficult to automate since it requires designer input in terms of partitioning the

global system, choosing request and answer events, and forming interfaces. In this

chapter we tried to help with these design choices by providing some guidelines and

by outlining an approach for interface synthesis. The proposed approach constructs

interfaces as the projection of the closed-loop behavior of the associated module. This

approach offers a promising starting point for a problem that has not been addressed

in the literature, though it is not very computationally efficient. By constructing

the interfaces as an abstraction of a lower-level module, this overall approach begins

to resemble the compositional approaches proposed throughout the literature. In

particular, the MLIBC approach is similar to the IHSC approach, except it places

requirements on the construction of the supervisor rather than on the abstraction

operation.

A natural direction for future work would be to formalize the proposed approach to

interface synthesis and to make it more computationally efficient. Other approaches

to interface construction could also be explored. Another direction of work would be

to attempt to further generalize the hierarchical interface-based architecture. Specif-

ically, it could be useful if conditions were found under which a single “low-level”

module could interact with more than one “high-level” module. This generalization

would provide more flexibility in the partitioning of the global system.

CHAPTER 6

Conclusions and Future Work

This chapter summarizes the contributions of this dissertation in the context of

the greater body of work that exists in the literature. This chapter also proposes

some directions for future work that relate to the results that have already been

presented.

6.1 Contributions

The contribution of this work is the development of three new approaches to the

verification and design of DES. These approaches employ incremental and modular

methods, as well as abstraction, to mitigate the problem of state-space explosion

that plagues traditional methods for the analysis and design of DES.

6.1.1 Approach I: Incremental Hierarchical Supervisor Construction

The first methodology of this dissertation is referred to as Incremental Hierarchical

Supervisor Construction (IHSC) and its details are presented in Chapter 3. The IHSC

approach constructs modular supervisors each with respect to a single specification

and a “plant” that represents an incrementally larger portion of the global system.

Within a given level of the hierarchy, the supervisors are built with respect to disjoint

portions of the system. The “plant” for each supervisor is composed of those closed-

loop systems from the previous level of the hierarchy and those new subplants that

are relevant to the corresponding specification. This approach to synthesis leads the

resulting modular supervisor languages to be nonconflicting by construction since

either the supervisors address components that are disjoint (within a given level) or

the supervisors allow sets of behavior that are subsets of one another (between levels).

To reduce the complexity of this approach, abstraction is applied to each supervised

150

151

subsystem each time we move up a level of the hierarchy. Specifically, a natural

projection with the observer property is employed. The resulting modular supervisors

are proven to provide safe, nonblocking control when acting in conjunction. The

potential complexity savings provided by this approach are demonstrated through

application to two moderately sized examples.

6.1.2 Approach II: Equivalence-Based Conflict Resolution

This dissertation’s second approach to supervisor construction is presented in

Chapter 4 and is referred to as Equivalence-Based Conflict Resolution (EBCR).

The EBCR approach first builds traditional local modular supervisors in the sense

of [8]. The automata representing the closed-loop modules are then incrementally

abstracted and composed. In this process, a conflict-equivalent abstraction is em-

ployed and each time a new module is added the resulting composition is checked

for blocking. If the composition is nonblocking then nothing needs to be done; if

blocking is detected, then a filter law is synthesized to resolve the conflict within

the composition. The resulting behavior achieved by the modular supervisors and

conflict-resolving filters acting in conjunction is proven to be safe and nonblocking.

The algorithm provided for constructing the conflict-resolving filters is also a con-

tribution in that it synthesizes a covering-based supervisor that provides a solution to

the state avoidance problem that is less restrictive than any state-feedback method-

ologies that currently exist in the literature. This algorithm can also be applied to

nondeterministic and partially-observed systems and has polynomial complexity.

The promise of this overall approach is again demonstrated through application

to a moderately sized FMS example.

6.1.3 Approach III: Multi-Level Interface-Based Control

The final approach to verification and supervisor construction presented in this

work is the Multi-Level Interface-Based Control (MLIBC) approach. The details of

the MLIBC approach can be found in Chapter 5. This work partitions the global

system into modules and then introduces interfaces between the modules to restrict

interaction and allow global properties to be verified by local analysis. Specifically,

requirements are presented that can be verified by analyzing each module with re-

spect to its neighboring interfaces. These local requirements are then shown to

152

provide nonblocking of the global system and controllability of the global supervisor

with respect to the global plant.

Beyond verification, the use of interfaces also allows control to be synthesized

locally. In this work, a naive approach is proposed that is demonstrated to synthesize

component supervisors that are maximally permissive with respect to a given plant,

specification, and set of interfaces. An approach is also presented for synthesizing

the interfaces required of the MLIBC approach. The proposed interface construction

methodology offers a promising solution to a problem that has not yet been addressed

in the literature. Heuristics for implementing the overall MLIBC approach, as well as

its potential complexity savings, are demonstrated through application to different

versions of the FMS example.

6.2 Discussion

The three approaches to supervisor construction presented in this dissertation

each possess their own advantages and disadvantages. In particular, there is often a

trade-off between the complexity reduction provided by an approach and the permis-

siveness of the control it generates. This is also true of other likeminded approaches

to supervisor construction that exist in the literature. Unfortunately, it is often not

possible to strictly compare the complexity or permissiveness of two different ap-

proaches; this can generally only be accomplished on a case-by-case basis. In this

section we will specifically discuss the three approaches of this dissertation with re-

spect to the FMS example first shown in Fig. 1.3. The details of this FMS model can

be found in Section 3.4.2. In the process of presenting the results for this example we

will try and point out some trends between the three approaches of this dissertation.

We will additionally try and put these approaches into context with respect to the

larger field of research.

The IHSC approach in many cases generates the most permissive control of the

three approaches of this dissertation. For the FMS example, the language represent-

ing the behavior allowed by the set of modular supervisors found from both applica-

tions of the IHSC approach is contained in the language allowed by the monolithic

solution. However, the monolithic and modular solution both allow a maximum of

six pieces to be active in the factory at the same time. A monolithic supervisor will

always provide maximally permissive behavior and hence is a good benchmark. The

153

loss of optimality in the IHSC approach arises because a controllable event that has

been projected away cannot be disabled by a supervisor. Therefore, a supervisor

may have to disable a different controllable event that is less desirable in order to

keep the system safe.

Like the IHSC approach, the work of [17] that was developed at approximately

the same time also employs a natural projection with the observer property. This

work additionally requires an output-control-consistency property that limits which

controllable events may be projected away in order to guarantee that their modular

solution is maximally permissive. The addition of the output-control-consistency

property reduces the amount of complexity reduction that is possible. We conjecture

that the addition of output-control-control consistency to the IHSC requirements

would result in maximally permissive control. This, however, has not been proven.

We also conjecture that the removal of the output-control-consistency property from

the approach of [17] will result in safe, nonblocking control and a greater reduction

in computational complexity.

The architecture of [17] is different than that employed in the IHSC approach

in that it builds modular supervisors then generates an additional level of control

to resolve conflict among the supervisors. This structure increases the amount of

events that are shared among the modules and hence limits the number of events

that can be considered for abstraction as compared to the IHSC approach. This fact

provides another reason why that in many cases the IHSC approach will require less

complexity than the approach of [17].

The EBCR approach of this dissertation employs a similar architecture to [17].

The EBCR approach, however, employs a conflict-equivalent abstraction rather than

a natural projection with the observer property. A conflict-equivalent abstraction in

general generates a smaller model than an observer-type abstraction. This means

that, in most cases, the EBCR approach requires the construction of smaller au-

tomata than the IHSC approach or the approach of [17]. This trend is supported

by application to the FMS example. As shown in Table 6.1, the IHSC approach re-

quires that an automaton with at least 210 states and 516 transitions be constructed,

while the EBCR approach requires that an automaton with only 128 states and 428

transitions be constructed.

Most algorithms presented in this dissertation have complexity that is polynomial

154

Table 6.1: Summary of Results for the FMS example
case] states (] transitions)] states (] transitions) maximum]

in largest supervisor in largest intermediate automaton pieces active

monolithic 2256 (7216) 13,248 (46,424) 6

IHSC modular 1 165 (435) 220 (609) 6

IHSC modular 2 106 (270) 210 (516) 6

EBCR modular 80 (259) 128 (428) 5

MLIBC modular 27 (46) 80 (128) 3

in the number of states and events of a given automaton. Therefore, automata size

is a reasonable metric of computational complexity. An exception to the polynomial

complexity generalization that arises in the EBCR approach is the generation of the

conflict-equivalent abstraction. The process of generating this abstraction is based

on a heuristic application of a select set of rules and hence its complexity is less

well understood. A better understanding of the generation of conflict-equivalent

abstractions remains an open area of research.

Even though the conflict-equivalent abstraction generates a greater reduction in

model size than a natural projection with the observer property, there are cases where

the IHSC approach requires the construction of smaller automata than the EBCR

approach. These cases arise because of the increased sharing of events between

modules described in the discussion of [17].

While in most cases the EBCR approach requires the construction of smaller

automata than the IHSC approach, it also in most cases generates control that is more

restrictive. This trend is exemplified by application to the FMS model. The EBCR

solution for this system allows only five pieces to be active in the factory at one time,

while the IHSC solution allows six pieces to be active at once. The EBCR approach

loses optimality because like the IHSC approach it allows controllable events to be

hidden. The further restrictiveness of the EBCR approach arises because the conflict-

equivalent abstraction introduces nondeterminism. This nondeterminism reflects the

fact that the abstraction hides which state the underlying system is actually in. This

in turn leads the filter laws to be more conservative than they would otherwise need

to be.

The MLIBC approach is the final methodology presented in this dissertation.

This approach in most cases requires the construction of the smallest automata and

155

results in the least permissive control. This statement is supported by the results

of the FMS example presented in Table 6.1. The fact that the verification and

supervisor design of the MLIBC approach is truly modular is what enables such

large complexity savings. The modularity also makes the MLIBC approach more

reconfigurable than the other two approaches. The restrictiveness of the approach

arises because the structural requirements on the supervision is in most cases stronger

than the requirements placed on the abstractions of the other approaches. If we

assume that the interfaces are formed heuristically, then we believe algorithms for

the verification of the MLIBC requirements and for the synthesis of the modular

supervisors can be developed that have polynomial complexity in the number of

states and events of a given module with its interfaces.

We further believe the trends demonstrated by the results in Table 6.1 will become

more pronounced with application to larger examples.

6.3 Future Work

Directions of future research that relate to the work of this dissertation include

addressing the implementation of the existing approaches, applying the methods

of the presented work to new problems, and exploring new techniques for model

reduction.

6.3.1 Practical implementation

The three approaches to supervisor synthesis presented in this work, as well as

many related works, are new theoretical results that have been applied to only a small

number of moderately-sized academic examples. In order to better understand the

true applicability of these results, as well as to better understand how the different

approaches relate to one another, it is necessary that these techniques be applied to

a wider variety of larger-scale examples. This goal is made difficult by the fact that

many of the existing approaches require input from the designer during the synthesis

process. Furthermore, many of the proposed algorithms have not been implemented

in software yet. Addressing these difficulties provide one possible direction for future

research activities.

Examples where designer input enters in the IHSC approach include choosing the

order in which specifications are addressed and determining which events are to be

156

abstracted away. Algorithm 3.18 provides one approach for choosing the ordering

of specifications. The investigation of other ordering methodologies is still an open

problem. The work of [15] presents a polynomial time algorithm for finding an

extension of the set of observable events for a projection such that the projection is

an observer. There does not, however, exist in general a minimal set of such events.

Therefore, heuristic algorithms for determining a “good” set of events to retain could

still be investigated.

For the EBCR approach, the order in which the closed-loop modules are com-

posed and abstracted also requires designer input. Results presented in [21] evaluate

several strategies based on the size of the automata or the size of the shared alpha-

bets. This investigation tries to minimize the size of the resulting automata and

could also provide inspiration for choosing the order of specifications in the IHSC

approach. A reason to revisit the investigation of [21] is that that work was only in-

terested in detecting conflict, not in synthesizing supervisors. Therefore, it would be

interesting to see how the ordering schemes compare in terms of the permissiveness

of the resulting control. Along these lines, it could also be informative to explore

the possibility of waiting to construct filters in the EBCR approach. The reason

this may be beneficial is because it is possible that conflict within a composition of

modules could be resolved by the addition of other modules without the need of a

conflict-resolving filter. The trade-off that arises here is that by waiting to construct

the filter, more events are hidden, thereby limiting the set of transitions the filter

law can disable to prevent the conflict if it is present. Determining which events to

hide is another designer input that could be investigated.

With regard to the EBCR approach, the implementation of the conflict-equivalent

abstraction could also be investigated. The abstraction is achieved by the application

of a set of heuristic rules. The order in which these rules are applied is something that

could be evaluated. It is also possible other rules for generating conflict-equivalent

abstractions could be found. To apply the EBCR approach to large-scale systems,

it would also be necessary to implement the filter construction algorithm (Algo-

rithm 4.27) in software.

The MLIBC approach also requires designer input in determining the partitioning

of the global system, choosing request and answer events, and forming interfaces.

Guidelines for making some of these choices were presented in Section 5.5.1, but

157

this area could be explored further. The approach to interface synthesis outlined

in Section 5.4 is another area that could be investigated, in particular, with regard

to improving the computational complexity of the approach. Finally, algorithms

for verifying the MLIBC requirements and implementing the proposed approach

to supervisor synthesis need to be developed and implemented in software. It is

proposed that existing algorithms for verification and supervisor synthesis in the

two-level case be followed [7] [37].

Another way to increase the size of systems to which the approaches of this dis-

sertation can be applied is to employ more computationally efficient data structures

than automata, such as binary decision diagrams [3] and state tree structures [46].

For the two-level interface-based architecture, binary decision diagrams have already

been employed [62].

6.3.2 Reducing complexity in diagnosis

Another direction for research would be to apply some of the techniques developed

in this dissertation for supervisor synthesis to constructing diagnosers for determining

the occurrence of faults. Fault diagnosis is a problem that suffers from the same

state-space explosion issues that motivated the work of this dissertation.

An existing approach proposed by [79] applies an abstraction to the monolithic

plant model such that the diagnoser constructed from this reduced model produces

the same diagnostic information as the diagnoser built from the original model. The

model reduction employed is a state aggregation approach that partitions the original

state space based on the fault properties of the states. This approach is a similar

concept to the state aggregation employed in [30] to ease the complexity of supervisor

construction. A requirement on the original model is that each state be distinctly

labeled as a fault or normal state. It may be possible to transform any automaton

model into a form that has this property.

A possible direction for future research would be to apply this approach to model

reduction in a more incremental manner. That is, apply the model reduction to each

component before composing the components into the monolithic model. This would

provide benefits in that it would make the process of model reduction simpler and

would avoid the construction of the unabstracted monolithic plant. In order for this

approach to work, it would be necessary to be show that the order of the operations

158

of reduction and composition can be commuted. An indication that this might be

possible is the fact that the projection operation can be distributed across parallel

composition when shared events are not erased.

Another idea concerning reduction of the number of states in the diagnoser relates

to the observer property. One of the benefits of the observer property is that it was

shown to guarantee that the complexity of the projection operation is polynomial

if the operation possesses the observer property [72]. Since the construction of the

diagnoser is essentially taking a projection and adding labels, it seems the observer

property could guarantee that the diagnoser state space will not grow exponentially.

Furthermore, since [54] has shown that the observer property is maintained across

composition in the case that shared events are not erased, this means that an incre-

mental approach might be applied here too.

Modular approaches to diagnosis have been also been formulated [6] [10]. The idea

behind modular diagnosis is that diagnosers are built for each component of a larger

system. In the case that each component is diagnosable, then the system as a whole is

diagnosable. Therefore, in this instance, the modular approach to diagnosis provides

the same information as a centralized diagnoser built for the monolithic system. The

more interesting case, however, is if not all the individual modules are diagnosable. If

not all of the components are diagnosable it is possible that the overall system is still

diagnosable by a centralized diagnoser. This difference arises because not all strings

accepted by a component are necessarily accepted by the monolithic system. This

happens because some strings accepted by a particular component may be blocked

by a different component. Therefore, if there are two traces accepted by a component

that reflect different failure conditions, it is possible that one of the strings will be

blocked by one of the other components thereby eliminating the ambiguity.

The work of [10] addresses this uncertainty by generating a test that determines

whether or not a system is modularly diagnosable. Unfortunately, the test requires

knowledge of the monolithic diagnoser which defeats part of the motivation for us-

ing a modular approach. The work of [6] rather uses an incremental approach that

begins with a component diagnoser that cannot be diagnosed and considers addi-

tional modular diagnosers one at a time until the ambiguity is resolved or until all

components are exhausted. A direction for future work would be to improve upon

these modular approaches, in particular, by combining them with model reduction

159

techniques.

6.3.3 Additional model reduction techniques

Within this work two types of abstraction were employed, natural projection with

the observer property and conflict-equivalent abstraction. These two approaches

to model reduction maintain different system properties and hence are suited to

different approaches to supervisor synthesis. Specifically, the observer property pro-

vides observation equivalence so that the supervisor can be designed for the reduced

model and will achieve safe, nonblocking behavior when it is applied to the full

model. Conflict-equivalent abstraction maintains conflict properties and is therefore

well-suited to designing a conflict-resolving level of control. Other abstraction tech-

niques have also been developed that may be suited to other approaches to supervisor

synthesis.

A new type of reduction that has been developed that could be investigated is

the notion of a supervision-equivalent abstraction [22]. This approach to reduction

is able to capture the same information as the maximally permissive supervisor, but

in a more compact manner. It is, however, unclear what the complexity associated

with synthesizing the supervisor is. Another approach to model reduction is referred

to as partial order techniques [14]. The idea here is that when concurrent subsystems

are composed, there may be events in the alphabets of the subsystems whose relative

order is not important. Therefore, partial-order techniques reduce the complexity of a

model by not capturing all the permutations of the orderings of these events. Another

approach to abstraction is able to generate a reduced model by recognizing repeated

structure in the components of a larger system. This approach to abstraction is

referred to as a symmetry reduction [12] [59].

Each of the above reduction techniques could be explored in the context of su-

pervisor or diagnoser synthesis. Additionally, multiple reduction techniques could

be employed together. For example, either the IHSC approach or the EBCR ap-

proach could be applied to an individual module in the multiple-level interface-based

architecture. Similarly, an observer-type abstraction could possibly be employed in

constructing the modular supervisors in the EBCR approach before the conflict-

resolving filters are constructed.

APPENDIX

160

161

APPENDIX

Proposition 3.5:

Let K1, K2, L ⊆ Σ∗ be languages and let K = K1 ∩ K2. Also let Σu ⊆ Σ and K1

and K2 be nonconflicting. If K2 is Σu-controllable with respect to K1 ∩L, and K1 is

Σu-controllable with respect to L, then K is Σu-controllable with respect to L.

Proof.

K2Σu ∩ (K1 ∩ L) ⊆ K2

⇒ K2Σu ∩ (K1 ∩ L) ⊆ K1 ∩K2

⇒ K2Σu ∩ ((K1Σu ∩ L) ∩ L) ⊆ K2Σu ∩ (K1 ∩ L) ⊆ K1 ∩K2

⇒ (K2 ∩K1)Σu ∩ L ⊆ K1 ∩K2

⇒ (K1 ∩K2)Σu ∩ L ⊆ K1 ∩K2

Proposition 3.11:

Let P : Σ∗ → Σ∗
a be a natural projection and let L ⊆ Σ∗ and Ka ⊆ Σ∗

a be languages.

Also let K̃m = P−1(Ka) ∩ L, Σu ⊆ Σ and Σu,a = Σu ∩ Σa. If Ka is Σu,a-controllable

with respect to P (L), then K̃m is Σu-controllable with respect to L.

Proof. Since it is given that Ka is Σu,a-controllable with respect to P (L), we have

that KaΣu,a ∩ P (L) ⊆ Ka.

If σ ∈ Σu,a, then by the above we obtain

Kaσ ∩ P (L) ⊆ Ka

P−1(Kaσ) ∩ P−1(P (L)) ⊆ P−1(Ka)

P−1(Ka)σ ∩ L ⊆ P−1(Ka)

(P−1(Ka) ∩ L)σ ∩ L ⊆ P−1(Ka) ∩ L

K̃mσ ∩ L ⊆ K̃m

162

If σ ∈ (Σu − Σu,a), then P (σ) = ε, so

P [P−1(Ka)σ] ⊆ Ka

P−1(Ka)σ ⊆ P−1(Ka)

(P−1(Ka) ∩ L)σ ∩ L ⊆ P−1(Ka) ∩ L

K̃mσ ∩ L ⊆ K̃m

Proposition 4.7:

Let P : Σ∗ → Σ∗
a be a natural projection and let Lm = L ⊆ Σ∗ and Ka ⊆ Σ∗

a be

languages. Also let K̃ = P−1(Ka)∩L and K̃m = P−1(Ka)∩Lm. If the projection P

possesses the Lm-observer property and Ka ⊆ P (Lm), then K̃m = K̃.

Proof. Note that if the Lm-observer property holds for all strings P (s)t ∈ P (Lm),

then it will also hold for all strings P (s)t ∈ Ka ⊆ P (Lm). In general, P−1(Ka) ∩ Lm ⊆
P−1(Ka)∩Lm = P−1(Ka)∩L, therefore it is only necessary to show that P−1(Ka)∩
L ⊆ P−1(Ka) ∩ Lm.

Let s ∈ P−1(Ka) ∩ L, therefore, s ∈ P−1(Ka). Taking projection of both sides,

P (s) ∈ P (P−1(Ka)) = Ka. Hence, P (s)t ∈ Ka for some t ∈ Σ∗
a. Since P has the

Lm-observer property, we then know ∃u ∈ Σ∗ such that su ∈ Lm and P (su) =

P (s)t ∈ Ka. Therefore, su ∈ P−1(Ka) since P−1(P (su)) ⊆ P−1(Ka) and hence,

su ∈ P−1(Ka) ∩ Lm. Therefore, s ∈ P−1(Ka) ∩ Lm ⊆ P−1(Ka) ∩ Lm. And thus we

have shown our desired result, P−1(Ka) ∩ L ⊆ P−1(Ka) ∩ Lm

Proposition 4.25:

If for the subautomaton H v G, H↑ is nonempty and f ′ is given by equation (4.23),

then Qf ′ = R′(Q↑
h).

Proof. By assumption, H↑ is nonempty. Step 1 of Algorithm 4.23 then provides that

q0 ∈ R′(Q↑
h). Additionally, since f ′ only disables transitions, q0 will be reachable

under control. That is, q0 ∈ Qf ′ .

(⊆) We will next show that Qf ′ ⊆ R′(Q↑
h) by induction. For any q ∈ Qf ′−{q0}, there

exist q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ Στ satisfying conditions (C5-C7). For

163

the basis step, we already have q0 ∈ R′(Q↑
h). For the induction step, suppose that

qk ∈ R′(Q↑
h) ⊆ Q↑

h. We now want to show that qk+1 ∈ δg(qk, σk) ⊆ R′(Q↑
h). Consider

two cases:

1. If σk ∈ Σu, we then have that qk+1 ∈ δg(qk, σk) ⊆ Q↑
h since qk ∈ Q↑

h and Q↑
h is Σu-

invariant. Furthermore, since σk ∈ Σu we have that σk /∈ A′
H↑(qk). Therefore,

qk+1 ∈ δg(qk, σk) ⊆ R′(Q↑
h) by Step 2 of Algorithm 4.23.

2. If σk ∈ Σc, then by condition C6 and equation (4.23), we have σk ∈ f ′(qk) =

Στ − A′
H↑(qk). Therefore, by Step 2 of Algorithm 4.23 we again have that

qk+1 ∈ δg(qk, σk) ⊆ R′(Q↑
h).

This completes the induction.

(⊇) We will now show that Qf ′ ⊇ R′(Q↑
h). For any q ∈ R′(Q↑

h) − {q0} there exist

q1, q2, . . . , qm ∈ Qg and σ0, σ1, . . . , σm−1 ∈ Στ satisfying conditions analogous to (C1-

C4), but for Q↑
h instead of Qh. Since q ∈ R′(Q↑

h) implies q ∈ Qg, to show that

q ∈ Qf ′ , it is sufficient to prove that σi ∈ f ′(qi)(i = 0, 1, . . . , m − 1). By condition

C3 and equation (4.23), we have σi ∈ Στ − A′
H↑(qi) = f ′(qi).

Theorem 5.10:

If the two-level interface system composed of DES H1, H2
1 , I

2
1 , . . . , H

2
n, I2

n, is level-wise

nonblocking and interface consistent with respect to the alphabet partition given by

(5.1), then the global system is nonblocking:

H1
m ∩

⋂
j=1,...,n

(H2
mj
∩ I2

mj
) = H1 ∩

⋂
j=1,...,n

(H2
j ∩ I2

j)

Proof. Proof of this theorem follows exactly the logic presented in [37], with the

exception of Proposition 13 of [37]. A modification of this proposition is proven

below.

Proposition 13 from [37] applies to a serial two-level interface system, that is, a

system with a single high-level module H1, a single interface I2, and a single low-

level module H2. The event sets Σ1 and Σ2 will represent those events relevant to H1

and H2 respectively, that are not request or answer events. In our modification of

164

Proposition 13, we will employ a modified version of the serial interface consistency

definition of [37]. Specifically, the Point 4 of this definition has been relaxed as

follows:

(∀s ∈ (Σ∗.ΣA2)∗.(Σ2)∗ ∩H2 ∩ I2)(∀ρ ∈ ΣR2) sρ ∈ I2 ⇒
(∃l ∈ (Σ2)∗) slρ ∈ H2 ∩ I2 (1)

We will additionally employ the following modified version of Point 5:

(∀s ∈ H2 ∩ I2)(∀ρ ∈ ΣR2)(∀α ∈ ΣA2) sρα ∈ I2 ⇒ (∃l ∈ (Σ2)∗) sρlα ∈ H2 ∩ I2

The following alternate definition of a command-pair interface and Proposition 8

from [37] will be referred to in the revised proof of Proposition 13 given below.

Definition: [37] A DES I2 = (X2, ΣR2∪̇ΣA2 , ξ2, x2
0, X

2
m) is a command-pair inter-

face if the following are true:

A) Σ2
I = ΣR2∪̇ΣA2

B) (∀s ∈ L(I2))(∀ρ ∈ ΣR2) sρ ∈ L(I2) ⇒ s ∈ Lm(I2)

C) (∀s ∈ Lm(I2))(∀σ ∈ ΣI2) sσ ∈ L(I2) ⇒ σ /∈ ΣA2

D) Lm(I2) = {ε} ∪ (Σ∗
I2 .ΣA2 ∩ L(I2))

E) L(I2) ⊆ (ΣR2 .ΣA2)∗

Proposition 8: [37]

a) (∀s, s′ ∈ Σ∗) s ∈ H1 and PH1(s) = PH1(s′) ⇒ s′ ∈ H1

b) (∀s, s′ ∈ Σ∗) s ∈ H1
m and PH1(s) = PH1(s′) ⇒ s′ ∈ H1

m

c) (∀s, s′ ∈ Σ∗) s ∈ H2 and PH2(s) = PH2(s′) ⇒ s′ ∈ H2

d) (∀s, s′ ∈ Σ∗) s ∈ H2
m and PH2(s) = PH2(s′) ⇒ s′ ∈ H2

m

e) (∀s, s′ ∈ Σ∗) s ∈ I2 and PI2(s) = PI2(s′) ⇒ s′ ∈ I2

f) (∀s, s′ ∈ Σ∗) s ∈ I2
m and PI2(s) = PI2(s′) ⇒ s′ ∈ I2

m

Before we begin the revised proof of Proposition 13, we first want to show that

the Point 4 of (1) implies the following is true:

(∀s ∈ (Σ∗.ΣA2)∗.(Σ1 ∪ Σ2)∗ ∩H2 ∩ I2)(∀ρ ∈ ΣR2) sρ ∈ I2 ⇒
(∃l ∈ (Σ2)∗) slρ ∈ H2 ∩ I2 (2)

165

First let s ∈ (Σ∗.ΣA2)∗.(Σ1∪Σ2)∗∩H2∩I2 and s′ = PH2(s). Since the projection

operation is idempotent this means that PH2(s′) = PH2(PH2(s)) = PH2(s). Also since

ΣI2 ⊆ ΣH2 , this means that PI2(s′) = PI2(PH2(s)) = PI2(s). Applying Proposition

8 Point c and Point e, therefore, provides that s′ ∈ H2 ∩ I2. We can similarly show

that s′ ∈ (Σ∗.ΣA2)∗.(Σ2). This, therefore, means that s′ is subject to (1). Hence,

s′ρ ∈ I2 where ρ ∈ ΣR2 implies there exists an l ∈ (Σ2)∗ such that s′lρ ∈ H2. Also,

since PI2(s′ρ) = PI2(sρ), Proposition 8 Point e provides that s′ρ ∈ I2 if and only if

sρ ∈ I2. Hence, sρ ∈ I2 implies that there exists an l ∈ (Σ2)∗ such that s′lρ ∈ H2.

Since PH2(s′lρ) = PH2(slρ), Proposition 8 Point c then provides that slρ ∈ H2 and

we have shown that (1) implies (2). We can therefore use (2) as our Point 4 in the

following proposition.

Proposition 13:

If the system composed of DES H1, H2, and I2 is serial level-wise nonblocking and se-

rial interface consistent with respect to the alphabet partition Σ := Σ1∪̇Σ2∪̇ΣR2∪̇ΣA2 ,

then

(∀s ∈ H1 ∩H2 ∩ I2)(∀h ∈ (Σ1)∗.ΣR2 .(Σ1)∗.ΣA2) sh ∈ H1 ∩ I2 ⇒
(∃u ∈ Σ∗) s.t. (su ∈ H1 ∩H2 ∩ I2

m) ∧ (PH1(u) = h)

Proof.

Assume the system is serial level-wise nonblocking and interface consistent. (3)

Let s ∈ H1 ∩H2 ∩ I2, h ∈ (Σ1)∗.ΣR2 .(Σ1)∗.ΣA2 , and sh ∈ H1 ∩ I2. (4)

We will now show this implies we can construct a string u with the desired prop-

erties.

We first note that h ∈ (Σ1)∗.ΣR2 .(Σ1)∗.ΣA2 implies:

(∃h′ ∈ (Σ1)∗)(ρ ∈ ΣR2)(h′′ ∈ (Σ1)∗)(α ∈ ΣA2) s.t. h′ρh′′α = h (5)

We will show that we can construct strings l′, l′′ ∈ (Σ2)∗ such that sh′l′ρh′′l′′α ∈
H1 ∩H2 ∩ I2

m. We will also show that PH2(h′l′ρh′′l′′α) = h.

Our approach will be to show that s ∈ (Σ∗.ΣA2)∗.(Σ1 ∪ Σ2)∗ ∩ H2 ∩ I2 and

ρ ∈ EligI2(s). We will then use Point 4 of the serial interface consistency definition

to construct a suitable string l′. Similarly, we will show that sh′l′ρ ∈ Σ∗.ΣR2∩H2∩I2

166

and α ∈ EligI2(sh′l′ρ). We will then use Point 5 of the serial interface consistency

definition to construct a suitable string l′′.

Since sh ∈ I2 (by (4)), we have that PI2(sh) ∈ L(I2). Additionally, it is given

that I2 is a command-pair interface (by (3)). Therefore by Point E of the command-

pair interface definition, PI2(sh) = PI2(s)PI2(h) ∈ (ΣR2 .ΣA2)∗. Since it is given that

h ∈ (Σ1)∗.ΣR2 .(Σ1)∗.ΣA2 , PI2(h) = ΣR2 .ΣA2 , therefore, PI2(s) = (ΣR2 .ΣA2)∗. This,

therefore, implies that s ∈ P−1
I2 ((ΣR2 .ΣA2)∗), hence:

s ∈ (Σ∗.ΣA2)∗.(Σ1 ∪ Σ2)∗ (6)

Now note that sh ∈ H1 ∩ I2 (by (4)), and that h′ρ ≤ h (by (5)). As H1 and I2

are closed languages, we can now conclude:

sh′ρ ∈ H1 ∩ I2

As h′ ∈ (Σ1)∗ (by (5)), we also have PI2(sh′ρ) = PI2(sρ). Therefore, we can apply

Proposition 8 Point e, and conclude:

sρ ∈ I2

We now have s ∈ (Σ∗.ΣA2)∗.(Σ1∪Σ2)∗∩H2∩I2 (by (4) and (6)) and sρ ∈ I2 from

the previous step. This allows us to apply Point 4 of the serial interface consistency

definition and conclude:

(∃l′ ∈ (Σ2)∗) sl′ρ ∈ H2 ∩ I2 (7)

As h′ ∈ (Σ2)∗ by (5), we can conclude PI2(sh′l′ρ) = PI2(sl′ρ) and PH2(sh′l′ρ) =

PH2(sl′ρ). These facts along with (7) allows us to apply Proposition 8 Point c and

Point e, to show that:

sh′l′ρ ∈ H2 ∩ I2 (8)

From (4) and (5), we also have that sh′ρh′′α ∈ I2. Additionally, since h′′ ∈
(Σ1)∗ and l′ ∈ (Σ2)∗ we have that PI2(sh′ρh′′α) = PI2(sh′l′ρh′′α) = PI2(sh′l′ρα).

Therefore, we can apply Proposition 8 Point e, and conclude:

sh′l′ρα ∈ I2

We also have that sh′l′ ∈ H2∩I2 due to (8) and the fact that H2 and I2 are closed

languages. This along with the above means we can apply Point 5 of the interface

167

consistency properties and conclude:

(∃l′′ ∈ (Σ2)∗) sh′l′ρl′′α ∈ H2 ∩ I2

Also since h′′ ∈ (Σ1)∗ by (5), we can conclude PI2(sh′l′ρl′′α) = PI2(sh′l′ρh′′l′′α)

and PH2(sh′l′ρl′′α) = PH2(sh′l′ρh′′l′′α). These facts along with (9) allows us to apply

Proposition 8 Point c and Point e, to show that:

sh′l′ρh′′l′′α ∈ H2 ∩ I2 (9)

We next note that DES I2 is a command-pair interface by (3).

As α ∈ ΣA2 (by (5)), we can now conclude:

PI2(sh′l′ρh′′l′′α) ∈ Σ∗
I2 .ΣA2 ∩ L(I2)

⇒ PI2(sh′l′ρh′′l′′α) ∈ Lm(I2) by Point D of the command-pair interface definition.

⇒ sh′l′ρh′′l′′α ∈ I2
m (10)

From (4) and (5), we have sh′ρh′′α ∈ H1. As l′, l′′ ∈ (Σ2)∗ (by (7) and (9)), we

can conclude:

PH1(sh′ρh′′α) = PH1(sh′l′ρh′′l′′α) (11)

We can now apply Proposition 8 Point a, and conclude:

sh′l′ρh′′l′′α ∈ H1 (12)

Combining (12) with (9), (10), and (11), we have sh′l′ρh′′l′′α ∈ H1 ∩ H2 ∩ I2
m

and PH1(h′l′ρh′′l′′α) = PH1(h′ρh′′α) = h. We take u = h′l′ρh′′l′′α, and the proof is

complete.

Proposition 5.18:

Let E ⊆ Σ∗. For system Ψ, CM i
k
(E) is nonempty and closed under arbitrary union.

In particular, CM i
k
(E) contains a (unique) supremal element that we will denote

sup CM i
k
(E).

Proof.

168

We will break the proof into three parts: 1) show sup CM i
k
(E) is nonempty, 2)

show sup CM i
k
(E) is closed under arbitrary union, and 3) show sup CM i

k
(E) contains a

(unique) supremal element.

1) show sup CM i
k
(E) is nonempty.

Clearly, ∅ ⊆ E and the empty set is MICi
k with respect to Ψ and is thus in CM i

k
(E).

2) show sup CM i
k
(E) is closed under arbitrary union.

Let Zβ ∈ CM i
k
(E) for all β ∈ B, where B is an index set. Let Z = ∪{Zβ|β ∈ B}.

Clearly Zβ ⊆ Z for each β ∈ B.

⇒ (∀β ∈ B) Zβ ⊆ Z (13)

since prefix-closure preserves ordering. It is, therefore, sufficient to show that Z ∈
CM i

k
(E).

Clearly, Z ⊆ E . Hence, all we need to show is that Z is MIC i
k with respect to

Ψ. This means showing for all s ∈ Gi
k ∩I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩Z, the following conditions

are satisfied:

1. EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii
k
(s)

2. EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligGi

k∩Z(s), ∀j ∈ J i
k

3. (∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈ Gi

k ∩ I i
k ∩⋂

j∈Ji
k
I i+1

j ∩ Z

4. (∀ρ ∈ ΣRi
k
) (∀α ∈ ΣAi

k
) sρα ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩Z

5. s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
∩ Z

Let

s ∈ Gi
k ∩

⋂

j∈Ji
k

I i+1
j ∩ I i

k ∩ Z. (14)

We first note that this gives us that s ∈ Z.

⇒ (∃s′ ∈ Σ∗) ss′ ∈ Z
⇒ (∃β ∈ B) ss′ ∈ Zβ, by definition of Z.

⇒ s ∈ Zβ

Therefore, by (14) we have that ∃β ∈ B for which

s ∈ Gi
k ∩

⋂

j∈Ji
k

I i+1
j ∩ I i

k ∩ Zβ. (15)

169

a) We will now show EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligZ∩Ii
k
(s).

It is sufficient to show (∀σ ∈ Σu) sσ ∈ Gi
k ∩

⋂
j∈Ji

k
I i+1

j ⇒ sσ ∈ Z ∩ I i
k. Let

σ ∈ Σu. (16)

Assume

sσ ∈ Gi
k ∩

⋂

j∈Ji
k

I i+1
j . (17)

We will now show this implies sσ ∈ Z ∩ I i
k. We immediately have that s ∈

Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Zβ, σ ∈ Σu, and sσ ∈ Gi
k ∩

⋂
j∈Ji

k
I i+1

j , by (15), (16), and

(17). As Zβ ∈ CM i
k
(E) by definition and is thus MIC i

k for Ψ, we can conclude that

sσ ∈ Zβ ∩ I i
k.

⇒ sσ ∈ Z ∩ I i
k by (13), as required.

Part (a) is complete.

b) We will now show EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligGi

k∩Z(s), j ∈ J i
k.

Let j ∈ J i
k. It is sufficient to show that (∀α ∈ ΣAi+1

j
) sα ∈ I i+1

j ⇒ sα ∈ Gi
k ∩ Z.

Let

α ∈ ΣAi+1
j

. (18)

Assume

sα ∈ I i+1
j . (19)

We will now show this implies sα ∈ Gi
k∩Z. We immediately have that s ∈ Gi

k∩I i
k∩⋂

j∈Ji
k
I i+1

j ∩Zβ, α ∈ ΣAi+1
j

, and sα ∈ I i+1
j , by (15), (18), and (19). As Zβ ∈ CM i

k
(E)

by definition and is thus MIC i
k for Ψ, we can conclude that sα ∈ Gi

k ∩ Zβ.

⇒ sα ∈ Gi
k ∩ Z by (13), as required.

Part (b) is complete.

c) We will now show (∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈

Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Z.

Let

s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗ and ρ ∈ ΣRi

k
. (20)

Assume

sρ ∈ I i
k. (21)

We will now show this implies that (∃l ∈ Σ∗
Li

k
) slρ ∈ Gi

k ∩I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩Z. We

immediately have that s ∈ Gi
k ∩I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩Zβ, s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗, ρ ∈ ΣRi

k
,

170

and sρ ∈ I i
k, by (15), (20), and (21). As Zβ ∈ CM i

k
(E) by definition and is thus

MICi
k for Ψ, we can conclude that (∃l ∈ Σ∗

Li
k
) sρlα ∈ Gi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Zβ

⇒ sρlα ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Z by (13), as required.

Part (c) is complete.

d) We will now show that (∀ρ ∈ ΣRi
k
) (∀α ∈ ΣAi

k
) sρα ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈

Gi
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Z ∩ I i
k.

Let

ρ ∈ ΣRi
k
, α ∈ ΣAi

k
. (22)

Assume

sρα ∈ I i
k. (23)

We will now show that this implies (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Z ∩ I i
k.

We immediately have that s ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Zβ, ρ ∈ ΣRi
k
, α ∈ ΣAi

k
, and

sρα ∈ I i
k, by (15), (22), and (23). As Zβ ∈ CM i

k
(E) by definition and is thus MICi

k

for Ψ, we can conclude that (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Zβ ∩ I i
k.

⇒ sρlα ∈ Gi
k ∩

⋂
j∈Ji

k
I i+1

j ∩ Z ∩ I i
k by (13), as required.

Part (d) is complete.

e) We will now show that s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩⋂

j∈Ji
k
I i+1

mj
∩ Z ∩ I i

mk
.

Assume

s ∈ I i
mk

. (24)

We will now show this implies (∃l ∈ Σ∗
Li

k
) sl ∈ Gi

mk
∩ ⋂

j∈Ji
k
I i+1

mj
∩ Z ∩ I i

mk
. We

immediately have that s ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j ∩ Zβ and s ∈ I i
mk

by (15) and

(24). As Zβ ∈ CM i
k
(E) by definition and is thus MIC i

k for Ψ, we can conclude that

(∃l ∈ Σ∗
Li

k
) sl ∈ Gi

mk
∩⋂

j∈Ji
k
I i+1

mj
∩ Zβ ∩ I i

mk
.

⇒ sl ∈ Gi
mk
∩⋂

j∈Ji
k
I i+1

mj
∩ Z ∩ I i

mk
by (13), as required.

Part (e) is complete.

From Parts (a), (b), (c), (d), and (e), we can conclude that Z is MIC i
k with

respect to the system Ψ. We can thus conclude Z ∈ CM i
k
(E), as required.

Part 2 is complete.

3) Show that CM i
k
(E) contains a (unique) supremal element.

It is sufficient to show that a supremal element exists, as uniqueness would thus

follow. Let sup CM i
k
(E) = ∪{Z|Z ∈ CM i

k
(E)}.

Claim: sup CM i
k
(E) is the supremal element.

171

From Part 2, we have that sup CM i
k
(E) ∈ CM i

k
(E). Clearly, (∀Z ∈ CM i

k
(E)) Z ⊆

sup CM i
k
(E), thus sup CM i

k
(E) is an upper bound for CM i

k
. All that remains to be

shown is that

(∀Z ′ ∈ CM i
k
(E)) if Z ⊆ Z ′ (∀Z ∈ CM i

k
(E)) ⇒ sup CM i

k
(E) ⊆ Z ′.

Let Z ′ ∈ CM i
k
(E). Assume

(∀Z ∈ CM i
k
) Z ⊆ Z ′. (25)

We must now show this implies sup CM i
k
(E) ⊆ Z ′. Let s ∈ sup CM i

k
(E), hence we

must show that s ∈ Z ′.

s ∈ sup CM i
k
(E) ⇒ (∃Z ∈ CM i

k
(E)) such that s ∈ Z, by definition of sup CM i

k
(E).

⇒ s ∈ Z ′, by (25).

We can thus conclude that sup CM i
k
(E) is the supremal element.

Part 3 is complete.

Corollary 5.23:

For system Ψ, if there exists j ∈ {0, 1, 2, . . .} such that Ωj

M i
k
(Z i

k) is a fixpoint, then

the system Φ with S i
mk

= Ωj

M i
k
(Z i

k) and S i
k = S i

mk
satisfies Points 3, 4, 5, and 6

of the multi-level consistency definition, Point ii) of the multi-level controllability

definition, and the multi-level nonblocking definition.

Proof.

Assume ∃j ∈ {0, 1, 2, . . .} such that ΩM i
k
(Ωj

M i
k
(Z i

k)) = Ωj

M i
k
(Z i

k). Let S i
mk

=

Ωj

M i
k
(Z i

k) and S i
k = S i

mk
.

By Theorem 5.22, S i
mk

= sup CM i
k
(Z i

mk
) is MIC i

k with respect to Ψ. (26)

By Definition 5.17 and using the fact that S i
k = S i

mk
, we have for all

s ∈ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k

I i+1
j ∩ S i

k : (27)

1. EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu ⊆ EligSi
k∩Ii

k
(s)

2. EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligGi

k∩Si
k
(s), ∀j ∈ J i

k

172

3. (∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈ Gi

k ∩ I i
k ∩⋂

j∈Ji
k
I i+1

j ∩ S i
k

4. (∀ρ ∈ ΣRi
k
) (∀α ∈ ΣAi

k
) sρα ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈ Gi

k ∩I i
k ∩

⋂
j∈Ji

k
I i+1

j ∩S i
k

5. s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Gi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
∩ S i

mk

We immediately note that Point II of the level-wise controllability definition fol-

lows immediately from Point 1 of (27).

We can then use the fact that Hi
k = Gi

k ∩ S i
k and Hi

mk
= Gi

mk
∩ S i

mk
to rewrite

Points 2-5 of (27) for all s ∈ Hi
k ∩

⋂

j∈Ji
k

I i+1
j ∩ I i

k : (28)

1. EligIi+1
j

(s) ∩ ΣAi+1
j
⊆ EligHi

k
(s), ∀j ∈ J i

k

2. (∀s ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) sρ ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) slρ ∈ Hi

k ∩ I i
k ∩⋂

j∈Ji
k
I i+1

j

3. (∀ρ ∈ ΣRi
k
) (∀α ∈ ΣAi

k
) sρα ∈ I i

k ⇒ (∃l ∈ Σ∗
Li

k
) sρlα ∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j

4. s ∈ I i
mk
⇒ (∃l ∈ Σ∗

Li
k
) sl ∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj

We now note that Points 3, 4, 5, and 6 of the interface consistency definition

follow immediately from (28). All that remains is to show the level-wise nonblocking

definition is satisfied. This means showing that Hi
mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
= Hi

k ∩I i
k ∩⋂

j∈Ji
k
I i+1

j . By (26), we have S i
mk

= sup CM i
k
(Z i

mk
).

⇒ S i
mk
⊆ Z i

mk
, since sup CM i

k
(Z i

mk
) ⊆ Z i

mk
by definition. (29)

⇒ S i
mk
⊆ Z i

k as Z i
mk
⊆ Z i

k.

⇒ S i
mk
⊆ Z i

k, as Z i
k is closed and prefix-closure preserves ordering.

⇒ S i
k ⊆ Z i

k, by definition of S i
k. (30)

Substituting for Z i
mk

in (29), we get S i
mk
⊆ Gi

mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

∩ E i
mk

. (31)

173

Substituting for Z i
k in (30), we get S i

k ⊆ Gi
k ∩ I i

k ∩
⋂

j∈Ji
k

I i+1
j ∩ E i

k. (32)

Using the fact that Hi
mk

= Gi
mk
∩ S i

mk
, we get Hi

mk
∩ I i

mk
∩ ⋂

j∈Ji
k
I i+1

mj
= Gi

mk
∩

I i
mk
∩⋂

j∈Ji
k
I i+1

mj
∩ S i

mk
.

⇒ Hi
mk
∩ I i

mk
∩

⋂

j∈Ji
k

I i+1
mj

= S i
mk

, by (31). (33)

Using the fact that Hi
k = Gi

k ∩ S i
k, we get Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j = Gi
k ∩ I i

k ∩⋂
j∈Ji

k
I i+1

j ∩ S i
k.

⇒ Hi
k ∩ I i

k ∩
⋂

j∈Ji
k

I i+1
j = S i

k, by (32). (34)

As S i
k = S i

mk
by definition, if follows from (33) and (34) thatHi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
=

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j , as required.

Proposition 5.25:

For system Φ, Let H i′
k = (Qi

k, Σ, δi
k, q

i
0k

, Qi
mk

). It thus follows that for all s, t ∈ L(H i′
k),

if δi
k(q

i
0k

, s) = δi
k(q

i
0k

, t) then

1. EligGi
k∩

⋂ Ii+1
j

(s) ∩ Σu * EligSi
k∩Ii

k
(s) ⇔ EligGi

k∩
⋂ Ii+1

j
(t) ∩ Σu * EligSi

k∩Ii
k
(t)

2. EligIi+1
j

(s) ∩ ΣAi+1
j
* EligHi

k
(s) ⇔ EligIi+1

j
(t) ∩ ΣAi+1

j
* EligHi

k
(t), ∀j ∈ J i

k

3. (∀s, t ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) [sρ ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
) slρ /∈ Hi

k ∩ I i
k ∩⋂

j∈Ji
k
I i+1

j] ⇔ [tρ ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) tlρ /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j]

4. (∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) [sρα ∈ I i

k]∧ [(∃l ∈ Σ∗
Li

k
) sρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j] ⇔
[tρα ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
) tρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j]

5. [s ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) sl /∈ Hi

mk
∩ I i

mk
∩ ⋂

j∈Ji
k
I i+1

mj
] ⇔ [t ∈ I i

mk
] ∧ [(∃l ∈

Σ∗
Li

k
) tl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
]

Before we present the proof of Proposition 5.25, we need to state two results

from [7]. In the following, the notation s ≡L t means that s is nerode equivalent to

t on the language L. In other words, s and t have the same continuations in the

174

language L.

Proposition 14: [7]

Let DES Gi = (Qi, Σ, δi, q0i, Qmi) (i = 1, 2) and G = G1‖G2‖ . . . ‖Gn = (Q, Σ, δ, q0, Qm).

It then follows that

(∀i ∈ {1, 2, . . . , n})(∀s, t ∈ Σ∗) δ(q0, s) = δ(q0, t) ⇒ s ≡Gi
t ∧ s ≡Gmi

t

Proposition 15: [7]

Let G = G1‖G2‖ . . . ‖Gn = (Q, Σ, δ, q0, Qm), Σa ⊆ Σ, and I1 and I2 be nonempty

index sets for our n DES. It thus follows that for all s, t ∈ Σ∗, if δ(q0, s) = δ(q0, t)

then

EligGI1
(s) ∩ Σa * EligGI2

(s) ⇔ EligGI1
(t) ∩ Σa * EligGI2

(t)

We now present the proof of Proposition 5.25.

Proof.

Let s, t ∈ Σ∗. Assume

δ(q0, s) = δ(q0, t) (35)

Using (35) we can apply Proposition 14 of [7] and conclude:

s ≡Gi
k

t ∧ s ≡Gi
mk

t

s ≡Hi
k

t ∧ s ≡Hi
mk

t

s ≡Ii
k

t ∧ s ≡Ii
mk

t

s ≡Ii+1
j

t ∧ s ≡Ii+1
mj

t (36)

1. Show EligGi
k∩

⋂ Ii+1
j

(s)∩Σu * EligSi
k∩Ii

k
(s) ⇔ EligGi

k∩
⋂

j∈Ji
k
Ii+1

j
(t)∩Σu * EligSi

k∩Ii
k
(t).

This follows from Proposition 15 of [7] when we take Σa = Σu, set index I1 to

represent Gi
k ∩

⋂
j∈Ji

k
I i+1

j , and set index I2 to represent S i
k ∩ I i

k.

2. Show EligIi+1
j

(s)∩ΣAi+1
j
* EligHi

k
(s) ⇔ EligIi+1

j
(t)∩ΣAi+1

j
* EligHi

k
(t), ∀j ∈ J i

k.

Let j ∈ J i
k. The desired result follows from Proposition 15 of [7] when we take

Σa = ΣAi+1
j

, set index I1 to represent I i+1
j , and set index I2 to represent Hi

k.

175

3. Show (∀s, t ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗)(∀ρ ∈ ΣRi

k
) [sρ ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
) slρ /∈

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j] ⇔ [tρ ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) tlρ /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j].

Let s, t ∈ (Σ∗.ΣAi
k
)∗.(ΣLi

k
)∗) and ρ ∈ ΣRi

k
. We first note that as s and t are

arbitrary and the condition to be proved is symmetric, it is, therefore, sufficient

to prove [sρ ∈ I i
k]∧ [(∃l ∈ Σ∗

Li
k
) slρ /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j] ⇒ [tρ ∈ I i
k]∧ [(∃l ∈

Σ∗
Li

k
) tlρ /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j]. Assume [sρ ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) slρ /∈

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j].

From the above and (36), we can now conclude that [tρ ∈ I i
k]∧ [(∃l ∈ Σ∗

Li
k
) tlρ /∈

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j] as desired.

4. Show (∀ρ ∈ ΣRi
k
)(∀α ∈ ΣAi

k
) [sρα ∈ I i

k] ∧ [(∃l ∈ Σ∗
Li

k
) sρlα /∈ Hi

k ∩ I i
k ∩⋂

j∈Ji
k
I i+1

j] ⇔ [tρα ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) tρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j].

Let ρ ∈ ΣRi
k

and α ∈ ΣAi
k
. We first note that as s and t are arbitrary and

the condition to be proved is symmetric, it is, therefore, sufficient to prove

[sρα ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) sρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j] ⇒ [tρα ∈ I i
k] ∧ [(∃l ∈

Σ∗
Li

k
) tρlα /∈ Hi

k ∩ I i
k ∩

⋂
j∈Ji

k
I i+1

j]. Assume [sρα ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) sρlα /∈

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j].

Based on the above and (36), we can conclude [tρα ∈ I i
k] ∧ [(∃l ∈ Σ∗

Li
k
) tρlα /∈

Hi
k ∩ I i

k ∩
⋂

j∈Ji
k
I i+1

j] as desired.

5. Show [s ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) sl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
] ⇔ [t ∈ I i

mk
] ∧ [(∃l ∈

Σ∗
Li

k
) tl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
].

We first note that as s and t are arbitrary and the condition to be proved is

symmetric, it is, therefore, sufficient to prove [s ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) sl /∈

Hi
mk
∩I i

mk
∩⋂

j∈Ji
k
I i+1

mj
] ⇒ [t ∈ I i

mk
]∧ [(∃l ∈ Σ∗

Li
k
) tl /∈ Hi

mk
∩I i

mk
∩⋂

j∈Ji
k
I i+1

mj
].

Assume [s ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) sl /∈ Hi

mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
].

Based on the above and (36), we can thus conclude [t ∈ I i
mk

] ∧ [(∃l ∈ Σ∗
Li

k
) tl /∈

Hi
mk
∩ I i

mk
∩⋂

j∈Ji
k
I i+1

mj
] as desired.

BIBLIOGRAPHY

176

177

BIBLIOGRAPHY

[1] Supremica. Available: http://www.supremica.org.

[2] B. A. Brandin, R. Malik, and P. Malik. Incremental verification and synthesis of discrete-event
systems guided by counter examples. IEEE Transactions on Control Systems Technology,
12(3):387–401, May 2004.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

[4] P. E. Caines and Y. J. Wei. The hierarchical lattices of a finite state machine. Systems Control
Letters, 25:257–263, July 1995.

[5] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems. Kluwer Academic
Publishers, Boston, MA, 1999.

[6] O. Contant, S. Lafortune, and D. Teneketzis. Diagnosability of discrete event systems with
modular structure. Discrete Event Dynamic Systems: Theory and Applications, 16:9–37, 2006.

[7] P. Dai. Synthesis method for hierarchical interface-based supervisory control. Master’s thesis,
Dept. of Computing and Software, McMaster University, Hamilton, Canada, 2006.

[8] M. H. de Queiroz and J. E. R. Cury. Modular supervisory control of composed systems. In
Proc. American Control Conf., pages 4051–4055, Chicago, USA, 2000.

[9] M.H. de Queiroz, J.E.R. Cury, and W.M. Wonham. Multitasking supervisory control of
discrete-event systems. Discrete Event Dynamic Systems: Theory and Applications, 15:375–
395, 2005.

[10] R. Debouk. Diagnosis of discrete event systems: A modular approach. In Proc. IEEE Int
Conf. Systems, Man, and Cybernetics, pages 306–311, 2003.

[11] E.W. Endsley and D.M. Tilbury. Modular verification of modular finite state machines. In
Proc. 43rd IEEE Conf. Decision & Control, pages 972–979, The Bahamas, 2004.

[12] J.M. Eyzell and J.E.R. Cury. Exploiting symmetry in the synthesis of supervisors for discrete
event systems. IEEE Trans. Automat. Contr., 46(9):1500–1505, 2001.

[13] M. Fabian and B. Lennartson. On non-deterministic supervisory control. In Proc. 35th IEEE
Conf. Decision & Control, 1996.

[14] E. Fabre and A. Benveniste. Partial order techniques for distributed discrete event sys-
tems: Why you can’t avoid using them. In Proc. Int. Workshop on Discrete Event Systems
(WODES), pages 1–2, Ann Arbor, USA, 2006.

[15] L. Feng. On the computation of natural observers in discrete-event systems. Technical report,
University of Toronto, Systems and Control Group, Toronto, Canada, January 2006.

[16] L. Feng. Computationally Efficient Supervisor Design in Discrete-Event Systems. PhD thesis,
University of Toronto, Toronto, Canada, 2007.

178

[17] L. Feng and W.M. Wonham. Computationally efficient supervisor design: Abstraction and
modularity. In Proc. Int. Workshop on Discrete Event Systems (WODES), pages 3–8, Ann
Arbor, USA, 2006.

[18] L. Feng and W.M. Wonham. Computationally efficient supervisor design: Control flow de-
composition. In Proc. Int. Workshop on Discrete Event Systems (WODES), pages 9–14, Ann
Arbor, USA, 2006.

[19] H. Flordal. Compositional Approaches in Supervisory Control. PhD thesis, Chalmers Univer-
sity of Technology, Göteborg, Sweden, 2006.

[20] H. Flordal, M. Fabian, K. Akesson, and A. Hellgren. Controllability revisited: A generalization
for the modular approach. In Proceedings of the 11th IFAC Symposium of Information Control
Problems in Manufacturing, Salvador, Brazil, 2004.

[21] H. Flordal and R. Malik. Modular nonblocking verification using conflict equivalence. In Proc.
Int. Workshop on Discrete Event Systems (WODES), pages 100–106, Ann Arbor, USA, 2006.

[22] H. Flordal and R. Malik. Supervision equivalence [supervisor synthesis]. In Proc. Int. Work-
shop on Discrete Event Systems (WODES), pages 155–160, Ann Arbor, USA, 2006.

[23] B. Gaudin and H. Marchand. Modular supervisory control of a class of concurrent discrete
event systems. In Proc. Int. Workshop on Discrete Event Systems (WODES), pages 181–186,
Reims, France, 2004.

[24] M. Heymann and F. Lin. Nonblocking supervisory control of nondeterministic systems. Tech-
nical Report CIS-9620, Technion, Israel Institute of Technology, Haifa, Israel, October 1996.

[25] R.C. Hill, J.E.R. Cury, M.H. de Queiroz, and D.M. Tilbury. Modular requirements for hier-
archical interface-based supervisory control with multiple levels. In Proc. American Control
Conf., Seattle, USA, 2008.

[26] R.C. Hill and D.M. Tilbury. Modular supervisory control of discrete-event systems with ab-
straction and incremental hierarchical construction. In Proc. Int. Workshop on Discrete Event
Systems (WODES), pages 399–406, Ann Arbor, USA, 2006.

[27] R.C. Hill and D.M. Tilbury. Incremental hierarchical construction of modular supervisors for
discrete-event systems. to appear in the International Journal of Control, 2008.

[28] R.C. Hill, D.M. Tilbury, and S. Lafortune. Modular supervisory control with equivalence-based
conflict resolution. In Proc. American Control Conf., Seattle, USA, 2008.

[29] L.E. Holloway and B.H. Krogh. Synthesis of feedback logic control for a class of controlled
petri nets. IEEE Trans. Automat. Contr., 35(5):514–523, 1990.

[30] P. Hubbard and P. E. Caines. A state aggregation approach to hierarchical supervisory control
with applications to a transfer line example. In Proc. Int. Workshop on Discrete Event Systems
(WODES), Cagliari, Italy, 1998.

[31] K. Inan. Supervisory control: Theory and application to the gateway synthesis problem. In
Belgian-French-Netherlands Summer School on Discrete Event Systems, Spa, Belgium, 1993.

[32] J. Komenda and J. van Schuppen. Optimal solutions of modular supervisory control prob-
lems with indecomposable specification languages. In Proc. Int. Workshop on Discrete Event
Systems (WODES), pages 143–148, Ann Arbor, USA, 2006.

[33] J. Komenda, J. van Schuppen, B. Gaudin, and H. Marchand. Modular supervisory control
with general indecomposible specification languages. In Proc. 44th IEEE Conf. Decision &
Control and European Control Conf., pages 3474–3479, Sevilla, Spain, 2005.

179

[34] R. Kumar, V.K. Garg, and S.I. Marcus. Predicates and predicate transformers for supervisory
control of discrete event dynamical systems. IEEE Trans. Automat. Contr., 38:232–247, 1993.

[35] R. Kumar, S. Jiang, C. Zhou, and W. Qiu. Polynomial synthesis of supervisor for partially
observed discrete-event systems by allowing nondeterminism in control. IEEE Trans. Automat.
Contr., 50(4):463–475, April 2005.

[36] R. Kumar and M.A. Shayman. Non-blocking supervisory control of nondeterministic discrete-
event systems via prioritized synchronoziation. IEEE Trans. Automat. Contr., 41(8):1160–
1175, August 1996.

[37] R.J. Leduc. Hierarchical Interface-based Supervisory Control. PhD thesis, University of
Toronto, Toronto, Canada, 2002.

[38] R.J. Leduc, B.A. Brandin, M. Lawford, and W.M. Wonham. Hierarchical interface-based
supervisory control–part I: Serial case. IEEE Trans. Automat. Contr., 50(9):1322–1335, 2005.

[39] R.J. Leduc and P. Dai. Synthesis method for hierarchical interface-based supervisory control.
In Proc. American Control Conf., pages 4260–4267, New York, USA, 2007.

[40] R.J. Leduc, M. Lawford, and P. Dai. Hierarchical interface-based supervisory control of a
flexible manufacturing system. IEEE Transactions on Control Systems Technology, 14(4),
2006.

[41] R.J. Leduc, M. Lawford, and W.M. Wonham. Hierarchical interface-based supervisory control–
part II: Parallel case. IEEE Trans. Automat. Contr., 50(9):1336–1348, 2005.

[42] S.H. Lee and K.C. Wong. Decentralised control of concurrent discrete-event systems with
non-prefix closed local specifications. In Proc. 36th IEEE Conf. Decision & Control, pages
2958–2963, San Diego, USA, 1997.

[43] Y. Li. Control of Vector Discrete-Event Systems. PhD thesis, University of Toronto, Toronto,
Canada, 1991.

[44] Y. Li and W.M. Wonham. Control of vector discrete event systems-part I: The base model.
IEEE Trans. Automat. Contr., 38(8):1215–1227, 1993.

[45] F. Lin and W.M. Wonham. Decentralized supervisory control of discrete-event systems. In-
formation Sciences, 44:199–224, 1988.

[46] C. Ma. Nonblocking Supervisory Control of State Tree Structures. PhD thesis, University of
Toronto, Toronto, Canada, 2004.

[47] P. Madhusudan and P.S. Thiagarajan. Branching time controlers for discrete event systems.
Theoretical Computer Science, 274:117–149, 2002.

[48] P. Malik, R. Malik, D. Streader, and S. Reeves. Modular synthesis of discrete controllers.
In Proc. 12th IEEE International Conference on Engineering Complex Computer Systems
(ICECCS’07), 2007.

[49] R. Malik, H. Flordal, and P. Pena. Conflicts and projections. In Proc. 1st IFAC Workshop on
Dependable Control of Discrete Systems (DCDS’07), 2007.

[50] R. Malik, D. Streader, and S. Reeves. Conflicts and fair testing. International Journal of
Foundations of Computer Science, 17(4):797–813, 2006.

[51] R. Milner. Communication and Concurrency. Prentice-Hall, Inc, London, 1989.

[52] A. Overkamp. Supervisory control using failure semantics and partial specification. IEEE
Trans. Automat. Contr., 42:498–510, April 1997.

180

[53] S.J. Park and J.T. Lim. Nonblocking supervisory control of nondeterministic systems based
on multiple deterministic model approach. IEICE Trans. Inf. & Syst., E83-D(5):1177–1180,
May 2000.

[54] P. Pena, J.E.R. Cury, and S. Lafortune. Testing modularity of local supervisors: An approach
based on abstractions. In Proc. Int. Workshop on Discrete Event Systems (WODES), pages
107–112, Ann Arbor, USA, 2006.

[55] H. Qin and P. Lewis. Factorization of finite state machines under strong and observational
equivalences. Formal Aspects of Computing, 3:284–307, 1991.

[56] P.J. Ramadge and W.M. Wonham. Modular feedback logic for discrete event systems. SIAM
Journal of Control and Optimization, 25(5):1202–1218, 1987.

[57] P.J. Ramadge and W.M. Wonham. Modular supervisory control of discrete event systems.
Mathematics of Control, Signal and Systems, 1:13–30, 1988.

[58] P.J. Ramadge and W.M. Wonham. The control of discrete event systems. Proc. of IEEE,
77(1):81–98, 1989.

[59] K. Rohloff and S. Lafortune. The verification and control of interacting similar discrete-event
systems. SIAM Journal on Control and Optimization, 45(2):634–667, June 2006.

[60] K. Schmidt, T. Moor, and S. Perk. A hierarchical architecture for nonblocking control of
discrete event systems. In Mediterranean Conf. Control and Automation, pages 902–907, Li-
massol, Cyprus, 2005.

[61] K. Schmidt, J. Reger, and T. Moor. Hierarchical control of structural decentralized des. In
Proc. Int. Workshop on Discrete Event Systems (WODES), 2004.

[62] R. Song and R.J. Leduc. Symbolic synthesis and verification of hierarchical interface-based
supervisory control. In Proc. Int. Workshop on Discrete Event Systems (WODES), pages
419–426, Ann Arbor, USA, 2006.

[63] R. Su. Distributed Diagnosis for Discrete-Event Systems. PhD thesis, University of Toronto,
Toronto, Canada, 2004.

[64] R. Su and J. Thistle. A distributed supervisor synthesis approach based on weak bisimulation.
In Proc. Int. Workshop on Discrete Event Systems (WODES), pages 64–69, Ann Arbor, USA,
2006.

[65] R. Su and W.M. Wonham. Distributed diagnosis under global consistency. In Proc. 43rd IEEE
Conf. Decision & Control, pages 525–530, The Bahamas, 2004.

[66] R. Su and W.M. Wonham. Supervisor reduction for discrete-event systems. Discrete Event
Dynamic Systems: Theory and Applications, 14:31–53, 2004.

[67] P. Tabuada. Open maps, alternating simulations and control synthesis. In International
Conference on Concurrency Theory, pages 466–480, 2004.

[68] S. Takai and S. Kodama. M-controllable subpredicates arising in state feedback control of
discrete event systems. Int. J. of Control, 67(4):553–566, 1997.

[69] S. Takai and S. Kodama. Characterization of all m-controllable subpredicates of a given
predicate. Int. J. of Control, 70(4):541–549, 1998.

[70] S. Takai, T. Ushio, and S. Kodama. Static-state feedback control of discrete-event systems
under partial observation. IEEE Trans. Automat. Contr., 40(11):1950–1954, November 1995.

181

[71] W. Wang, S. Lafortune, and F. Lin. An algorithm for calculating indistinguishible states and
clusters in finite state automata with partially observable transitions. Systems Control Letters,
56:656–661, 2007.

[72] K.C. Wong. On the complexity of projections of discrete event systems. In Proc. Int. Workshop
on Discrete Event Systems (WODES), pages 201–206, Cagliari, Italy, 1998.

[73] K.C. Wong, J.G. Thistle, H.-H. Hoang, and R.P. Malhamé. Conflict resolution in modular
control with applications to feature interaction. In Proc. IEEE Conf. on Decision & Control,
pages 416–421, New Orleans, USA, 1995.

[74] K.C. Wong, J.G. Thistle, R.P. Malhame, and H.H. Hoang. Supervisory control of distributed
systems: Conflict resolution. Discrete Event Dynamic Systems: Theory and Applications,
10:131–186, 2000.

[75] K.C. Wong and W.M. Wonham. Hierarchical control of discrete-event systems. Discrete Event
Dynamic Systems: Theory and Applications, 6:241–273, 1996.

[76] K.C. Wong and W.M. Wonham. Modular control and coordination of discrete-event systems.
Discrete Event Dynamic Systems: Theory and Applications, 8:247–297, 1998.

[77] W.M. Wonham. Supervisory Control of Discrete-Event Systems. ECE Dept., University of
Toronto. current update 2006.07.01, available at http://www.control.utoronto.ca/DES.

[78] W.M. Wonham and P.J. Ramadge. On the supremal controllable sublanguage of a given
language. Siam J. of Control Optim., 25(3):637–659, 1987.

[79] S.H. Zad, R.H. Kwong, and W.M. Wonham. Fault diagnosis in discrete-event systems: Frame-
work and model reduction. IEEE Trans. Automat. Contr., 48(7):1199–1211, July 2003.

[80] H. Zhong and W.M. Wonham. On the consistency of hierarchical supervision in discrete-event
systems. IEEE Trans. Automat. Contr., 35(10):1125–1134, October 1990.

[81] C. Zhou, R. Kumar, and S. Jiang. Control of nondeterministic discrete-event systems for
bisimulation equivalence. IEEE Trans. Automat. Contr., 51(5):754–765, May 2006.

